《2021-2022学年京改版八年级数学下册第十六章一元二次方程专项测试试卷.docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版八年级数学下册第十六章一元二次方程专项测试试卷.docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十六章一元二次方程专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某公司去年的各项经营中,九月份的营业额为200万,十一月的营业额为950万元,如果平均每月营业额的增长率相同
2、,设这个增长率为,则可列方程得( )ABCD2、某种芯片实现国产化后,经过两次降价,每块芯片单价由128元降为88元.若两次降价的百分率相同,设每次降价的百分率为x,根据题意,可列方程A128(1 - x2)= 88B88(1 + x)2 = 128C128(1 - 2x)= 88D128(1 - x)2 = 883、下列方程中是一元二次方程的是( )Ay21B0CD4、下列所给方程中,没有实数根的是( )ABCD5、不解方程,判别方程的根的情况是()A有两个不相等的实数根B有两个相等的实数根C没有实数根D无法确定6、一元二次方程的二次项系数、一次项系数、常数项分别是( )A2,1,5B2,1
3、,5C2,0,5D2,0,57、关于x的一元二次方程x2mx(m2)0的根的情况是()A有两个不相等的实数根B有两个相等的实数根C没有实数根D根据m的取值范围确定8、若关于x的一元二次方程的一根为1,则k的值为( ) A1BCD09、已知m,n是方程的两根,则代数式的值等于( )A0BC9D1110、已知关于x的一元二次方程:x22xm0有两个不相等的实数根x1,x2,则( )Ax1x20Bx1x20Cx1x21Dx1x21第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知中,则的面积是_2、若m是方程的一个根,则的值为_3、已知实数a是一元二次方程x22016x+1
4、0的根,求代数式a22015a的值为_4、关于的一元二次方程有一个根为1,则的值为_5、若关于的一元二次方程有一个根为0,则_三、解答题(5小题,每小题10分,共计50分)1、某公司自主研发一款健康的产品燕窝饮品,主要成分是水果和燕窝经过一段时间的门店销售发现,当售价是40元/杯,每天可售出60杯若每杯每降低1元,就会多售出3杯已知每杯饮品的实际成本是20元,每天的其他费用是300元,物价局规定每件销售品的利润率不得高于成本的80%若每天的毛利润可达到600元(1)求该饮品的售价;(2)为支持今年的“洪灾”行动,该门店每卖一杯饮品,向某救助基金会捐款1元,求该店每月(按30天计算)的捐款金额2
5、、解分式方程:3、用合适的方法解下列方程:(1)x24x50;(2)2x26x30;(3)(2x3)25(2x3);(4)4、近日,广西南宁苏爷爷自家果园的上千斤皇帝柑发生蓝变(即果皮白皮层变蓝),无法正常售卖,他决定将这些皇帝柑免费寄给科研人员网友看到苏爷爷的故事,纷纷订购表示支持已知苏爷爷自家果园的皇帝柑有两种类型在售,一种是实惠装中型果实(简称“中果”),一种是豪华装大型果实(简称“大果”)(1)网友小张买了2箱中果,1箱大果,花了116元;网友小李买了1箱中果,2箱大果,花了124元求每箱中果和大果的售价分别是多少元?(2)在(1)的条件下,正常情况平均每周可销售30箱大果但为了减少库
6、存,苏爷爷决定对大果降价销售,经调查发现,一箱大果的售价每降低2元,大果的销量每周可增加5箱,如果大果每周的销售额为1600元,且降低后的售价不低于(1)中大果售价的70%求每箱大果的售价应该降低多少元?5、某市尊师重教,市委、市政府非常重视教育,将教育纳入质量强市考核,近几年全市公共预算教育支出逐年增长已知2019年教育支出约80亿元,2021年教育支出约为96.8亿元,求2019年到2021年教育支出的年平均增长率-参考答案-一、单选题1、C【分析】根据增长率的意义,列式即可【详解】设这个增长率为,根据题意,得,故选C【点睛】本题考查了一元二次方程的应用,增长率问题,熟练增长率问题计算特点
7、是解题的关键2、D【分析】根据该药品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解【详解】解:依题意得:128(1-x)2=88故选:D【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键3、B【分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程,据此解答即可【详解】解:A是二元二次方程,故本选项不合题意; B是一元二次方程,故本选项符合题意;C是二元二次方程,故本选项不合题意;D当a=0时,不含二次项,故本选项不合
8、题意;故选:B【点睛】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理如果能整理为ax2+bx+c0(a0)的形式,则这个方程就为一元二次方程4、D【分析】逐一求出四个选项中方程的根的判别式的值,取其小于零的选项即可得出结论【详解】解:A、(2)241040,一元二次方程有两个不相等的实数根; B、(4)245(-2)560,一元二次方程有两个不相等的实数根;C、(4)243140,一元二次方程有两个不相等的实数根; D、(3)2442-230,一元二次方程没有实数根故选:D【点睛】本题考查了一元二次方程根的判别式,牢记“当0时,一
9、元二次方程没有实数根”是解题的关键5、A【分析】利用根的判别式进行求解并判断即可【详解】解:原方程中,原方程有两个不相等的实数根故选:A【点睛】熟练掌握根的判别式是解答此题的关键,当0有两不相等实数根,当=0有两相等实数根,当0没有实数根6、B【分析】根据一元二次方程的基本概念,找出一元二次方程的二次项系数,一次项系数,以及常数项即可【详解】解:一元二次方程2x2+x-5=0,二次项系数、一次项系数、常数项分别是2、1、-5,故选:B【点睛】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a0)7、A【分析】根据根的判别式判断即可【详解】,方程有两个不相等的实数
10、根故选:A【点睛】本题考查一元二次方程根的判别式,当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根,熟记判别式并灵活应用是解题关键8、B【分析】把方程的根代入方程可以求出k的值【详解】解:把1代入方程有:1+2k+1=0,解得:k=-1,故选:B【点睛】本题考查的是一元二次方程的解,正确理解题意是解题的关键9、C【分析】利用方程的解的定义和一元二次方程根与系数的关系,可得, ,从而得到,再代入,即可求解【详解】解:m,n是方程的两根, ,故选:C【点睛】本题主要考查了方程的解的定义和一元二次方程根与系数的关系,熟练掌握使方程左右两边同时成立的未知数的值就是方程
11、的解;若,是一元二次方程 的两个实数根,则,是解题的关键10、D【分析】利用根与系数关系,得到两根之和,即可判断A选项,利用根的判别式,求出的取值范围,利用两根之积,得到,最后即可判断出正确答案【详解】解:由题意可知:两根之和:,故A错误,x22xm0有两个不相等的实数根,解得:, 由根与系数的关系可知:,只有D选项正确,故选:D【点睛】本题主要是考查了根与系数的关系以及根的判别式,熟练利用根与系数的关系,求出两根之和与两根之积,以及利用根的判别式,求出参数范围,是解决本题的关键二、填空题1、或【分析】如图所示,过点C作CEAB于E,先根据含30度角的直角三角形的性质和勾股定理求出,设,则,由
12、,得到,由此求解即可【详解】解:如图所示,过点C作CEAB于E,CEB=CEA=90,ABC=60,BCE=30,BC=2BE,设,则,解得或,或,或,故答案为:或【点睛】本题主要考查了勾股定理和含30度角的直角三角形的性质,解一元二次方程,解题的关键在于能够熟练掌握含30度角的直角三角形的性质2、-16【分析】把x=m代入,可得,然后代入计算即可;【详解】解:把x=m代入,得,=-3-13=-16故答案为:-16【点睛】本题考查了一元二次方程的解,以及整体代入法求代数式的值,求出是解答本题的关键3、【分析】利用方程解的定义得到,然后利用整体代入的方法计算代数式的值【详解】解:是方程的根,原式
13、故答案是:【点睛】本题主要考查了一元二次方程的解的定义,解题的关键是掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根4、-5【分析】直接利用一元二次方程的解的意义将x=1代入求出答案【详解】解:关于x的一元二次方程的一个根是1,12+m+4=0,解得:m=-5故答案是:-5【点睛】此题主要考查了一元二次方程的解,正确理解一元二次方程解的意义是解题关键5、1或-1或1【分析】将x=1代入方程求解即可【详解】解:将x=1代入方程得到解得m=1或-1故答案为:1或-1【点睛】此题考查了一元二
14、次方程的解,已知方程的解时应将解代入方程求某字母系数的值三、解答题1、(1)该商品的售价为30元/件;(2)该店每月的捐款金额为270元【分析】(1)根据总利润=每杯饮品的利润销售数量,即可得出关于x的一元二次方程,解之再根据题意取舍即可得出结论;(2)根据每月的捐款金额=1每天销售的数量30,即可得出结论【详解】解:(1)该饮品的售价为x元/杯(20x40),且当售价是40元/杯时,每天可售出该饮品60杯,且售价每降低1元,就会多售出3杯,每天能售出该饮品的杯数为60+3(40-x)=(180-3x)杯依题意,得:(x-20)(180-3x)-300=600,整理,得:x2-80x+1500
15、=0,解得:x1=30,x2=50物价局规定每杯饮品的利润不得高于成本价的80%,x4080%,即x32,x=50(不合题意,舍去)答:该商品的售价为30元/件;(2)1(180-330)30=270(元)答:该店每月的捐款金额为270元【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键2、x=4【分析】两边都乘以x2-4化为整式方程求解,然后验根即可【详解】解:,两边都乘以x2-4,得2(x-2)-4x=-(x2-4),x2-2x-8=0,(x+2)(x-4)=0,x1=-2,x2=4,检验:当x=-2时,x2-4=0,当x=4时,x2-40,x=4是原分式
16、方程的根【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验3、(1);(2);(3);(4)【分析】(1)方程利用因式分解法求出解即可;(2)方程利用公式法求出解即可;(3)方程变形后,利用因式分解法求出解即可;(4)方程利用公式法求出解即可【详解】解:(1)方程x24x50,分解因式得:(x-5)(x+1)=0,所以x-5=0或x+1=0,解得:x1=5,x2=-1;(2)方程2x26x30,a=2,b=-6,c=-3,=b2-4ac=36+24=600,x=,;(3)方程移项得:(2x-3)2-5(2x-3)=
17、0,分解因式得:(2x-3)(2x-3-5)=0,所以2x-3=0或2x-8=0,解得:;(4)a=1,b=,c=10,=b2-4ac=48-40=80,x=,【点睛】本题考查了解一元二次方程-因式分解法,以及公式法,熟练掌握各自的解法是解题的关键4、(1)每箱中果的售价为36元,每箱大果的售价为44元;(2)每箱大果的售价应该降低4元【分析】(1)设每箱中果的售价为x元,每箱大果的售价为y元,根据“2箱中果,1箱大果,花了116元; 1箱中果,2箱大果,花了124元”列出二元一次方程组求解即可;(2)根据“每周的销售额为1600元,且降低后的售价不低于(1)中大果售价的70%”列出方程和不等
18、式求解即可【详解】解:(1)设每箱中果的售价为x元,每箱大果的售价为y元,根据题意得 解得, 所以,每箱中果的售价为36元,每箱大果的售价为44元;(2)设每箱大果的售价应该降低m元,根据题意得, 解得, 解得, 所以,每箱大果的售价应该降低4元【点睛】本题本题主要考查了二元一次方程组的应用、一元一次不等式的应用以及一元二次方程的应用,正确找出等量关系是解答本题的关键5、2019年到2021年教育支出的年平均增长率为10%【分析】设2019年到2021年教育支出的年平均增长率为x,则2020年教育支出为, 2021年教育支出为,再由2021年教育支出约为96.8亿元,列方程,再解方程可得答案【详解】解:设2019年到2021年教育支出的年平均增长率为x,由题意得:, ,解得,(舍)答:2019年到2021年教育支出的年平均增长率为10%【点睛】本题考查的是一元二次方程的应用,掌握“两次变化后的量=原来的量(1+平均增长率)2”是解题的关键.