《2021-2022学年最新北师大版八年级数学下册第一章三角形的证明专题测评练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新北师大版八年级数学下册第一章三角形的证明专题测评练习题(无超纲).docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第一章三角形的证明专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、等腰三角形的一个顶角是80,则它的底角是( )A40B50C60D702、等腰三角形周长为17cm,其中一边
2、长为5cm,则该等腰三角形的腰长为()A6cmB7cmC5cm或6cmD5cm3、如图所示,P为平分线上的点,于D,则点P到OB的距离为( )A5cmB4cmC3cmD2cm4、如图,在ABC中,BAC45,E是AC中点,连接BE,CDBE于点F,CDBE若AD,则BD的长为()A2B2C2D35、ABC 中, 是垂足,与交于,则ABCD6、如图,等腰ABC中,于D,点O是线段AD上一点,点P是BA延长线上一点,若,则下列结论:;是等边三角形;其中正确的是( )ABCD7、下列说法正确的是()A全等三角形是指形状相同的两个三角形B全等三角形的周长和面积分别相等C所有的直角三角形都是全等三角形D
3、所有的等边三角形都是全等三角形8、下列三个说法:有一个内角是30,腰长是6的两个等腰三角形全等;有一个内角是120,底边长是3的两个等腰三角形全等;有两条边长分别为5,12的两个直角三角形全等其中正确的个数有( )A3B2C1D09、下列各组数中,能构成直角三角形的是( )A4,5,6B1,1,C6,8,13D5,12,1510、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )A10B15C17D19第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、锐角ABC中,AB的垂直平分线与的垂直平分线交于点,则_2、等腰ABC,底角为70,点在边上,将ABC分成两
4、个三角形,当这两个三角形有一个是以为腰的等腰三角形时,则的度数是_3、如图,在RtABC中,B90,A60,AB,E为AC的中点,F为AB上一点,将AEF沿EF折叠得到DEF,DE交BC于点G,若BFD30,则CG_4、如图,点D是的平分线OC上一点,过点D作交射线OA于点E,则线段DE与OE的数量关系为:DE_OE(填“”或“”或“”)5、如图,等腰ABC中,ABAC,A40,点D在边AC上,ADB100,则DBC的度数为_ 三、解答题(5小题,每小题10分,共计50分)1、点P为等边ABC的边AB延长线上的动点,点B关于直线PC的对称点为D,连接AD(1)如图1,若BP=AB=2,依题意补
5、全图形,并直接写出线段AD的长度;(2)如图2,线段AD交PC于点E,设BCP=,求AEC的度数;求证:AE=CE+DE2、(情景呈现)画AOB=90,并画AOB的平分线OC(I)把三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边分别与AOB的两边OA,OB垂直,垂足为E,F(如图1)则PE=PF;若把三角尺绕点P旋转(如图2),则PE _PF(选填:“”或“=”)(理解应用)(2)在(1)的条件下,过点P作直线GHOC,分别交OA,OB于点G,如图3图中全等三角形有_对(不添加辅助线)猜想,FH,EF之间的关系为_(拓展延伸)(3)如图4,画AOB=60,并画AOB的平分线OC,
6、在OC上任取一点P,作EPF=120,EPF的两边分别与OA,OB相交于E,F两点,PE与PF相等吗?请说明理由3、已知POQ=120,点A,B分别在OP,OQ上,OAOB,连接AB,在AB上方作等边ABC,点D是BO延长线上一点,且AB=AD,连接AD(1)补全图形;(2)连接OC,求证:COP=COQ;(3)连接CD,CD交OP于点F,请你写出一个DAB的值,使CD=OB+OC一定成立,并证明4、如图,已知四边形ABCD中,AD22,CD2,B30,过点A作AEBC,垂足为E,AE1,且点E是BC的中点,求BCD的度数5、如图1,在平面直角坐标系xOy中,点A-4,0,B4,0,C0,4,
7、给出如下定义:若P为ABC内(不含边界)一点,且AP与BCP的一条边相等,则称P为ABC的友爱点(1)在P10,3,P2-1,1,中,ABC的友爱点是_;(2)如图2,若P为ABC内一点,且PAB=PCB=15,求证:P为ABC的友爱点;(3)直线l为过点M0,m,且与x轴平行的直线,若直线l上存在ABC的三个友爱点,直接写出m的取值范围-参考答案-一、单选题1、B【分析】依据三角形的内角和是180以及等腰三角形的性质即可解答【详解】解:(180-80)2=1002=50;答:底角为50故选:B【点睛】本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点2、C【分析】分为两种情况:5
8、cm是等腰三角形的腰或5cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行分析能否构成三角形【详解】若5cm为等腰三角形的腰长,则底边长为17557(cm),5+57,符合三角形的三边关系;若5cm为等腰三角形的底边,则腰长为(175)26(cm),此时三角形的三边长分别为6cm,6cm,5cm,符合三角形的三边关系;该等腰三角形的腰长为5cm或6cm,故选:C【点睛】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边3、C【分析】根据角平分线的性质可得角平分线上的点到角的两边的距离相等,即可求得点P到OB的距离等于【详解】解:P为平分线上的点
9、,于D,点P到OB的距离为3cm故选:C【点睛】本题考查了角平分线的性质,掌握角平分线的性质是解题的关键4、B【分析】过点C作CNAB于点N,连接ED,EN,利用SAS证明DCEBEN,可得EDNB,CEDENB135,得ADE是等腰直角三角形,可得ADDNBN,进而可得结果【详解】解:如图,过点C作CNAB于点N,连接EN,CNA90,BAC45,NCAA45,ANCN,点E是AC的中点,ANECNE45,CENAEN90,CEF+FEN90,CDBE,CFE90,CEF+FCE90,DCEBEN,在DCE和BEN中,DCEBEN(SAS),EDNB,CEDENB135,AED45AACN,
10、ADDE,AECE,AE=EN,ADDN,ADDNBN,BD2AD2故选B【点睛】本题主要考查了全等三角形的性质与判定,等腰直角三角形的性质与判定,解题的关键在于能够正确作出辅助线,构造全等三角形求解5、A【分析】根据题意利用含60的直角三角形性质结合勾股定理进行分析计算即可得出答案.【详解】解:如图,,设,所以勾股定理可得:,则解得:或(舍去),.故选:A.【点睛】本题考查含60的直角三角形性质和勾股定理以及等腰直角三角形,熟练掌握相关的性质是解题的关键.6、A【分析】利用等边对等角得:APOABO,DCODBO,则APO+DCOABO+DBOABD,据此即可求解;因为点O是线段AD上一点,
11、所以BO不一定是ABD的角平分线,可作判断;证明POC60且OPOC,即可证得OPC是等边三角形;证明OPACPE,则AOCE,得ACAE+CEAO+AP【详解】解:如图1,连接OB,ABAC,ADBC,BDCD,BADBAC12060,OBOC,ABC90BAD30OPOC,OBOCOP,APOABO,DCODBO,APO+DCOABO+DBOABD30,故正确;由知:APOABO,DCODBO,点O是线段AD上一点,ABO与DBO不一定相等,则APO与DCO不一定相等,故不正确;APC+DCP+PBC180,APC+DCP150,APO+DCO30,OPC+OCP120,POC180(OP
12、C+OCP)60,OPOC,OPC是等边三角形,故正确;如图2,在AC上截取AEPA,PAE180BAC60,APE是等边三角形,PEAAPE60,PEPA,APO+OPE60,OPE+CPECPO60,APOCPE,OPCP,在OPA和CPE中,OPACPE(SAS),AOCE,ACAE+CEAO+AP,ABAO+AP,故正确;正确的结论有:,故选:A【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键7、B【分析】根据全等三角形的性质,等边三角形的性质判断即可【详解】解:A、全等三角形是指形状和大小相同的两个三角
13、形,该选项错误;B、全等三角形的周长和面积分别相等,该选项正确;C、所有的直角三角形不一定都是全等三角形,该选项错误;D、所有的等边三角形不一定都是全等三角形,该选项错误;故选:B【点睛】本题考查的是全等三角形的性质,掌握全等形的概念,全等三角形的性质是解题的关键8、C【分析】根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可【详解】解:当一个是底角是30,一个是顶角是30时,两三角形就不全等,故本选项错误;有一个内角是120,底边长是3的两个等腰三角形全等,本选项正确;当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,故选:C【点睛】
14、本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键9、B【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可【详解】解:A、524262,不能构成直角三角形,故不符合题意;B、1212()2,能构成直角三角形,故符合题意;C、6282132,不能构成直角三角形,故不符合题意;D、12252152,不能构成直角三角形,故不符合题意故选:B【点睛】本题考查勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键10、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要
15、分两种情况讨论【详解】解:当腰是3,底边是7时,3+37,不满足三角形的三边关系,因此舍去当底边是3,腰长是7时,3+77,能构成三角形,则其周长3+7+717故选:C【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键二、填空题1、【分析】根据垂直平分线的性质可得,由三角形内角和定理可求出,从而可求出【详解】解:如图,根据直平分线的性质可得, 故答案为:136【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等解题的关键是利用
16、等腰三角形的性质和三角形内角和定理2、100或110【分析】画出图形,分两种情况考虑:AD=BD时,则ABD=A,由三角形内角和可求得ADB的度数;BD=BC时,则BDC=C=70,从而可求得ADB的度数【详解】AB=AC,底角为70ABC=C=70,A=180(ABC+C)=40 当AD=BD时,如图1,则ABD=A=40ADB=180(A+ABD)=18080=100当BD=BC时,如图2,则BDC=C=70ADB=180BDC=18070=110综上所述,ADB的度数为100或110【点睛】本题考查了等腰三角形的性质、三角形内角和定理等知识,涉及分类讨论,关键是等腰三角形的性质,另外要注
17、意分类讨论3、2【分析】由直角三角形的性质求出,由折叠的性质得出,可求出,由勾股定理可求出的长【详解】解:,为的中点,将沿折叠得到,设,则,解得,故答案为:2【点睛】本题考查了折叠的性质,直角三角形的性质,勾股定理,三角形的内角和定理等知识,熟练掌握折叠的性质是解题的关键4、【分析】首先由平行线的性质求得EDO=DOB,然后根据角平分线的定义求得EOD=DOB,最后根据等腰三角形的判定和性质即可判断【详解】解:EDOB,EDO=DOB,D是AOB平分线OC上一点,EOD=DOB,EOD=EDO,DE=OE,故答案为:=【点睛】本题主要考查的是平行线的性质、角平分线的定义以及等角对等边,根据平行
18、线的性质和角平分线的定义求得EOD=EDO是解题的关键5、30【分析】先根据等腰三角形的性质和三角形内角和定理求出,再根据三角形外角的性质求解即可【详解】解:ABAC,A40,ADB=DBC+C=100,DBC=30,故答案为:30【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,等腰三角形的性质,熟知相关知识是解题的关键三、解答题1、(1)(2);证明见解析【分析】(1)连接DP,BD,可证明BPD为等边三角形,再结合等腰三角形的性质和三角形外角的性质证明BAD=BDA=30,可得ADP=90,利用勾股定理即可得出结论;(2)连接BD与CP交于F,连接DC,利用等腰三角形的性质和三角
19、形内角和定理求得和,从而可求得,根据轴对称图形对应点连接线段被对称轴垂直平分、三角形内角和定理、对顶角相等可求得的度数;连接BE,在AE上截取GE=CE,可证明GCE为等边三角形和ACGBCE,结合等量代换即可证明结论【详解】解:(1)补全图形如下,连接DP,BD,ABC为等边三角形,ABC=60,AB=BC=2,又BCP+BPC=ABC=60,BC=BP,BCP=BPC=30,点B关于直线PC的对称点为D,BP=DP,BPC=DPC=30,BPD=60,BPD为等边三角形,DBP=60,DP=BD=BP=AB=2,BAD=BDA,又BAD+BDA=DBP=60,BAD=BDA=30,ADP=
20、90,(2)如下图所示,连接BD与CP交于F,连接DC,由(1)可知ACB=60,AC=BC,点B关于直线PC的对称点为D,BC=CD=AC,CFD=90,,,如下图,连接BE,在AE上截取GE=CE,由得,GE=CE,GCE为等边三角形,GC=CE,GCE=60,由(1)得ACB=60,AC=BC,ACG=BCE=60-BCG,在ACG和BCE中,ACGBCE(SAS)AG=BE,点B关于直线PC的对称点为D,BE=DE,【点睛】本题考查轴对称的性质,全等三角形的性质和判定,等边三角形的性质和判定,三角形外角和内角的性质,等腰三角形的性质,勾股定理等(1)中能正确构造直角三角形并证明是解题关
21、键;(2)中掌握等边对等角定理,并能利用三角形内角和定理表示等腰三角形的底角是解题关键;中掌握割补法是解题关键2、(1)=;(2)3;(3)相等,理由见解析【分析】(1)PE=PF,利用条件证明PEMPFN即可得出结论;(2)根据等腰直角三角形的性质得到OP=PG=PH,证明GPEOPF(ASA),EPOFPH,GPOOPH,得到答案;根据勾股定理,全等三角形的性质解答;(3)作PGOA于G,PHOB于H,证明PGEPHF,根据全等三角形的性质证明结论【详解】(1)如图2,过点P作PMOA,PNOB,垂足是M,N, AOB=PME=PNF=90,MPN=90,OC是AOB的平分线,PM=PN,
22、EPF=90,MPE=FPN,在PEM和PFN中,PEMPFN(ASA),PE=PF,故答案为:=;(2)OC平分AOB,AOC=BOC=45,GHOC,OGH=OHG=45,OP=PG=PH,GPO=90,EPF=90,GPE=OPF,在GPE和OPF中,GPEOPF(ASA),同理可证明EPOFPH,GPOOPH(SAS),全等三角形有3对,故答案为:3;GE2+FH2=EF2,理由如下:GPEOPF,GE=OF,EPOFPH,FH=OE,在RtEOF中,OF2+OE2=EF2,GE2+FH2=EF2,故答案为:GE2+FH2=EF2;(4)如图,作PGOA于G,PHOB于H,在OPG和O
23、PH中,OPGOPH,PG=PH,AOB=60,PGO=PHO=90,GPH=120,EPF=120,GPH=EPF,GPE=FPH,在PGE和PHF中,PGEPHF,PE=PF【点睛】本题考查几何变换综合题,全等三角形的判定和性质、角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题3、(1)见解析;(2)见解析;(3)DAB=150,见解析【分析】(1)依据题意作出相应图形即可;(2)在BQ上截取BE=AO,连接CE,由等边三角形的性质得,CA=CB,ACB=60由同角的补角相等得CAO=CBE,由SAS证得CAO和CBE全等,即可得证;(3)由DAB=150, D
24、A=AB,得ADB=ABD=15,由等边三角形性质,可得CAB=CBA=ACB =60,故CAD=150,由等边对等角得ADC=ACD=15,由此DBC=DCB=75,由等角对等边得DB=DC 再由POQ=120,BDC=30,得DFO=90,等量代换即可得证.【详解】解:(1)如图所示:(2)证明如下:在BQ上截取BE=AO,连接CE,ABC为等边三角形,CA=CB,ACB=60POQ=120,CAO+CBO=180CBO+CBE=180,CAO=CBE,在CAO和CBE中,CAOCBE(SAS),CO=CE,COA=CEB,COE=CEB,COP=COQ; (3)DAB=150,如图:DA
25、B=150, DA=AB,ADB=ABD=15ABC为等边三角形,CAB=CBA=ACB =60,CAD=150,AD=AC,ADC=ACD=15,DBC=DCB=75,DB=DC,POQ=120,BDC=30,DFO=90AD=AC,DF=FCDO=OC DB=DO+OB,DB=CO+OB,CD= OB + OC.【点睛】此题考查全等三角形的判定和性质、等腰三角形的判定和性质,等边三角形的判定和性质,以及添加辅助线构造全等三角形,掌握相应的判定和性质是解答此题的关键.4、【分析】连接AC根据线段垂直平分线的性质得出ABAC,根据等边对等角得出ACBB30,根据30角所对的直角边等于斜边的一半
26、得出AC2AE2在ACD中,根据勾股定理的逆定理得出ACD90,那么BCDACB+ACD120【详解】如图,连接ACAEBC,点E是BC的中点ABAC,ACBB30,AC2AE2在ACD中,AD28,AC2+CD24+48,AD2AC2+CD2,ACD90,BCDACB+ACD120【点睛】本题考查了勾股定理及其逆定理、线段垂直平分线的性质、等腰三角形的性质、含30角的直角三角形的性质,作出辅助线求出AC=2是解题的关键5、(1)P1、P2;(2)见解析;(3)0m2【分析】(1)根据A(x1,y1)、和B(x2,y2)之间的距离公式AB=以及友爱点定义解答即可;(2)由题意易知OAB=OCA
27、=OCB=45,进而可求得PAC=OCP=30,则可得出ACP=APC=75,根据等角对等边和友爱点定义即可证得结论;(3)由题意,ABC在友爱点P满足AP=BP或AP=PC或AP=BC=AC三种情况,分别讨论求解即可【详解】解:(1)点,关于y轴对称,点在y轴上,AP1=BP1,故P1是的友爱点;AP2= ,CP2= ,AP2= CP2,故P1是的友爱点;AP3=,CP3=,BP3=,BC=,故P3不是的友爱点,综上,的友爱点是P1、P2,故答案为:P1、P2;(2)点,OA=OB=OC,AC= BC, BOC=90,OAB=OCA=OCB=45,PAC=OCP=30,ACP=45+30=7
28、5,APC=180PACACP=1803075=75,ACP=APC,AP=AC=BC,P为的友爱点;(3)由题意,ABC的友爱点P满足AP=BP或AP=PC或AP=BC三种情况,若AP=BP,则点P在线段AB的垂直平分线上,即点P在y轴线段OC上,若AP=PC,则点P在线段AC的垂直平分线上;若AP=BC,则点P在以点A为圆心,BC即AC长为半径的圆上,如图,设AC的中点为G,则G的坐标为(2,2),由图可知,当直线l为过点G和过点且与轴平行的直线在x轴之间时,直线上存在的三个友爱点,m的取值范围为0m2【点睛】本题考查两点之距离坐标公式、线段垂直平分线的判定与性质、等腰三角形的判定与性质、三角形的内角和定理、圆的定义、坐标与图形等知识,理解题中定义,熟练掌握相关知识的联系与运用,利用数形结合的思想解决问题是解答的关键