《2021-2022学年度强化训练北师大版九年级数学下册第三章-圆专项测评试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版九年级数学下册第三章-圆专项测评试题(含答案及详细解析).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版九年级数学下册第三章 圆专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB是O的直径,弦,则阴影部分图形的面积为( )ABCD2、某村东西向的废弃小路/两侧分别有一块与l距离都为2
2、0 m的宋代碑刻A,B,在小路l上有一座亭子P A,P分别位于B的西北方向和东北方向,如图所示该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小人工湖建成后,亭子P到湖岸的最短距离是( )A20 mB20mC(20 - 20)mD(40 - 20)m3、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,3)则经画图操作可知:ABC的外接圆的圆心坐标是( )A(2,1)B(1,0)C(1,1)D(0,1)4、如图,边长为4的正三角形外接圆,以其各
3、边为直径作半圆,则图中阴影部分面积为()A12+2B4+C24+2D12+145、如图,AB是O的直径,弦CDAB于E,若OA2,B60,则CD的长为( )AB2C2D46、如图,点A,B,C在O上,若ACB40,则AOB的度数为()A40B45C50D807、如图,中的半径为1,内接于若,则的长是( )ABCD8、半径为10的O,圆心在直角坐标系的原点,则点(8,6)与O的位置关系是()A在O上B在O内C在O外D不能确定9、到三角形三个顶点距离相等的点是此三角形()A三条角平分线的交点B三条中线的交点C三条高的交点D三边中垂线的交点10、在半径为6cm的圆中,的圆心角所对弧的弧长是( )Ac
4、mBcmCcmDcm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果一个扇形的圆心角为120,半径为2,那么该扇形的面积为_2、如图,圆锥的底面半径OC1,高AO2,则该圆锥的侧面积等于 _3、一个圆锥的底面半径为5,高为12,则这个圆锥的全面积是_(结果保留)4、如图,直线l与半径为8的O相切于点A,P是O上的一个动点(不与点A重合),过点P作PBl于B,连接PA设PA=x,PB=y,则(x-y)的最大值是_5、如图,四边形ABCD内接于O,点M在AD的延长线上,AOC142,则CDM_三、解答题(5小题,每小题10分,共计50分)1、如图,ABC内接于O,高AD
5、经过圆心O(1)求证:;(2)若,O的半径为5,求ABC的面积 2、已知:如图,射线求作:,使得点在射线上,作法:在射线上任取一点;以点为圆心,的长为半径画圆,交射线于另一点;以点为圆心,的长为半径画弧,在射线上方交于点;连接、(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:为的直径,点在上,(_)(填推理依据)连接,为等边三角形(_)(填推理依据)所以为所求作的三角形3、如图,M是CD的中点,EMCD,若CD4,EM6,求所在圆的半径4、ABC中,BCAC5,AB8,CD为AB边上的高,如图1,A在原点处,点B在y轴正半轴上,点C在第一象限,若A从原点出发,沿
6、x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动ABC在平面上滑动如图2,设运动时间表为t秒,当B到达原点时停止运动(1)当t0时,求点C的坐标;(2)当t4时,求OD的长及BAO的大小;(3)求从t0到t4这一时段点D运动路线的长;(4)当以点C为圆心,CA为半径的圆与坐标轴相切时,求t的值5、如图1,ABC为圆内接三角形,AEBC于D交O于点E,BFAC于F交AE于点G(1)求证:DGDE;(2)如图2,连接BE,作OMBE于M,求证:AC2OM;(3)在(2)的条件下,连接OG、CE,若OGCE,BG2FC+2FG,AG2,求OM长-参考答案-一、单选题1、D【分析】根据
7、垂径定理求得CE=ED=;然后由圆周角定理知COE=60然后通过解直角三角形求得线段OC,然后证明OCEBDE,得到求出扇形COB面积,即可得出答案【详解】解:设AB与CD交于点E,AB是O的直径,弦CDAB,CD=2,如图,CE=CD=,CEO=DEB=90,CDB=30,COB=2CDB=60,OCE=30,又,即,在OCE和BDE中,OCEBDE(AAS),阴影部分的面积S=S扇形COB=,故选D【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键2、D【分析】根据人工湖
8、面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可【详解】人工湖面积尽量小,圆以AB为直径构造,设圆心为O,过点B作BC ,垂足为C,A,P分别位于B的西北方向和东北方向,ABC=PBC=BOC=BPC=45,OC=CB=CP=20,OP=40,OB=,最小的距离PE=PO-OE=40 - 20(m),故选D【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键3、A【分析】首先由ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为ABC的外心【详
9、解】解:ABC的外心即是三角形三边垂直平分线的交点,如图所示:EF与MN的交点O即为所求的ABC的外心,ABC的外心坐标是(2,1)故选:A【点睛】此题考查了三角形外心的知识注意三角形的外心即是三角形三边垂直平分线的交点解此题的关键是数形结合思想的应用4、A【分析】正三角形的面积加上三个小半圆的面积,再减去中间大圆的面积即可得到结果【详解】解:正三角形的面积为:,三个小半圆的面积为:,中间大圆的面积为:,所以阴影部分的面积为:,故选:【点睛】本题考查了正多边形与圆,圆的面积的计算,正三角形的面积的计算,正确的识别图形是解题的关键5、B【分析】先证明是等边三角形,再证明求解从而可得答案.【详解】
10、解: 是等边三角形, 故选B【点睛】本题考查的是等边三角形的判定与性质,垂径定理的应用,锐角三角函数的应用,证明是等边三角形是解本题的关键.6、D【分析】由ACB=40,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得AOB的度数【详解】解:ACB=40,AOB=2ACB=80故选:D【点睛】本题考查了圆周角定理此题比较简单,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用7、B【分析】连接OA、OB,过点O作,由三角形内角和求出,由圆周角定理可得,由得是等腰三角形,即可知,根据三角函数已可求出AD,进而得出答案【详解
11、】如图,连接OA、OB,过点O作,是等腰三角形,故选:B【点睛】本题主要考查了圆周角定理,解题的关键在于能够熟练掌握圆周角定理8、A【分析】先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关系即可得【详解】解:由两点距离公式可得点(8,6)到原点的距离为,又的半径为10,点(8,6)到圆心的距离等于半径,点(8,6)在上,故选A【点睛】本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键9、D【分析】由题意根据线段的垂直平分线上的性质,则有三角形三边中垂线的交点到三角形的三个顶点距离相等【详解】解:垂直平分线上任意一点,到线段两端点的
12、距离相等,到三角形三个顶点的距离相等的点是三角形三边中垂线的交点故选:D【点睛】本题考查了线段的垂直平分线的性质,解题的关键是注意掌握线段的垂直平分线上的点到线段的两个端点的距离相等10、C【分析】直接根据题意及弧长公式可直接进行求解【详解】解:由题意得:的圆心角所对弧的弧长是;故选C【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键二、填空题1、【分析】利用扇形面积公式直接计算即可【详解】解:扇形的圆心角为120,半径为2,那么该扇形的面积为:,故答案为:【点睛】本题考查了求扇形面积,解题关键是熟记扇形面积公式:2、【分析】根据底面半径和高利用勾股定理得,然后根据圆锥的侧面积计算
13、公式可直接进行求解【详解】解:,圆锥的侧面积为故答案为【点睛】本题主要考查圆锥的侧面积,熟练掌握圆锥的侧面积计算公式是解题的关键3、90【分析】根据圆锥的侧面展开图是扇形,底面是圆,先求得母线长,再分别求得面积,最后相加即可求得全面积【详解】解:一个圆锥的底面半径为5,高为12,母线长为,则这个圆锥的全面积是故答案为:【点睛】本题考查了求圆锥侧面积,掌握圆锥侧面积公式是解题的关键侧面积底面半径母线长,圆锥的表面积底面积侧面积4、4【分析】作直径AC,连接CP,得出APCPBA,利用相似三角形的性质得出y=x2,所以x-y=x-x2=-x2+x=-(x-8)2+4,当x=8时,x-y有最大值是4
14、【详解】解:如图,作直径AC,连接CP, CPA=90,AB是切线,CAAB,PBl,ACPB,CAP=APB,APCPBA,PA=x,PB=y,半径为8,y=x2,所以x-y=x-x2=-x2+x=-(x-8)2+4,当x=8时,x-y有最大值是4,故答案为:4【点睛】本题考查了切线的性质,平行线的性质,相似三角形的判定与性质,以及二次函数的性质,熟练掌握性质及定理是解本题的关键5、71【分析】根据圆周角定理得到B71,再根据圆内接四边形的任意一个外角等于它的内对角即可得解【详解】解:AOC142,BAOC71,四边形ABCD内接于O,CDMB71,故答案为:71【点睛】此题考查了圆内接四边
15、形的性质、圆周角定理,熟记圆内接四边形的性质、圆周角定理是解题的关键三、解答题1、(1)见解析;(2)【分析】(1)根据垂径定理可得AD垂直平分BC,即可证明结论;(2)连接OB,根据勾股定理可得,得出,利用三角形面积公式求解即可【详解】证明:(1)在O中, ODBC于D, BD=CD, AD垂直平分BC, AB=AC; (2)连接OB,如图所示:BC=8,由(1)得BD=CD, , , , , ABC的面积:, ABC的面积为32【点睛】题目主要考查垂径定理的应用,垂直平分线的性质,勾股定理等,理解题意,综合运用各个定理性质是解题关键2、(1)图形见解析(2)直径所对的圆周角是直角;三边相等
16、的三角形是等边三角形【分析】(1)根据要求作出图形即可;(2)根据圆周角定理等边三角形的判定和性质解决问题即可(1)如图,ABC即为所求作(2)AB为O的直径,点C在O上,ACB=90(直径所对的圆周角是直角),连接OCOA=OC=AC,AOC为等边三角形(三边相等的三角形是等边三角形),A=60故答案为:直径所对的圆周角是直角,三边相等的三角形是等边三角形【点睛】本题考查作图-复杂作图,等边三角形的判定和性质,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题3、【分析】根据垂径定理的推论,可得EM过O的圆心点O, CMCD2 ,然后设半径为x,可得OM6x,再由勾股定理,即可
17、求解【详解】解:连接OC,M是CD的中点,EMCD,EM过O的圆心点O, CMCD2 , 设半径为x,EM6,OMEMOE6x, 在RtOCM中,OM2CM2OC2, 即(6x)222x2,解得:x 所在圆的半径为【点睛】本题主要考查了垂径定理,勾股定理,熟练掌握垂径定理及其推论,勾股定理是解题的关键4、(1)(3,4);(2)OD4,BAO60;(3);(4)或【分析】(1)先由,为边上的高,根据等腰三角形三线合一的性质得出为的中点,则,然后在中运用勾股定理求出,进而得到点的坐标;(2)如图2,当时即,先由为的中点,根据直角三角形斜边上的中线等于斜边的一半得出,则,判定为等边三角形,然后根据
18、等边三角形的性质求出;(3)从到这一时段点运动路线是弧,由,根据弧长的计算公式求解;(4)分两种情况:与轴相切,根据两角对应相等的两三角形相似证明,得出,求出的值;与轴相切,同理,可求出的值【详解】解:(1)如图1,BCAC,CDAB,D为AB的中点,ADAB4在RtCAD中,CD3,点C的坐标为(3,4);(2)如图2,当t4时,AO4,在RtABO中,D为AB的中点,ODAB4,OAODAD4,AOD为等边三角形,BAO60;(3)如图3,从t0到t4这一时段点D运动路线是弧DD1,其中,ODOD14,又D1OD906030,;(4)分两种情况:设AOt1时,C与x轴相切,A为切点,如图4
19、CAOA,CAy轴,CADABO又CDAAOB90,RtCADRtABO,即,解得;设AOt2时,C与y轴相切,B为切点,如图5同理可得,综上可知,当以点C为圆心,CA为半径的圆与坐标轴相切时,t的值为或【点睛】本题考查了圆的综合题,涉及到等腰三角形的性质,勾股定理,直角三角形的性质,等边三角形的判定与性质,弧长的计算,直线与圆相切,切线的性质,相似三角形的判定与性质,综合性较强,有一定难度,其中第(4)问进行分类讨论是解题的关键5、(1)见解析;(2)见解析;(3)【分析】(1)连接BE,首先根据题意得到,然后根据同弧所对的圆周角相等得到,然后根据等角的余角相等得到,进而得到,最后根据等腰三
20、角形三线合一性质即可证明出DGDE;(2)连接AO,OB,OE,OC,作OHAC于点H,首先根据圆周角定理以及角度之间的转化得到,然后证明,最后利用垂径定理即可证明AC2OM;(3)过点O作OHAC于H,ONBG于N,连接CG,OB,首先得到四边形ONFH是矩形,然后根据BG2FC+2FG得出NG=CF,然后证明出CDGCDE(SAS)和ONGGFC(HL),设GF=ON=x,CF=GN=y,根据勾股定理得到关于x和y的方程,然后根据和得到关于x和y的方程,联立方程即可求出OM的长度【详解】解:(1)如图所示,连接BE,BFAC,AEBC,又又AEBCDGDE(三线合一);(2)如图所示,连接
21、AO,OB,OE,OC,作OHAC于点H,OHAC,即又,AC2OM;(3)如图所示,过点O作OHAC于H,ONBG于N,连接CG,OB,又四边形ONFH是矩形,NF=OH,由(2)可知,又BG=2FC+2FG,ME=NF=FG+GN, NG=CF,在和中,CDGCDE(SAS)CE=CG=OG,在和中, ONGGFC(HL),OGN=GCF,OGC=90,是等腰直角三角形, ,设GF=ON=x,CF=GN=y,则,在直角ONG中,则,在直角ONB中,则, , ,在AGF中,即,将代入得:,即,联立解得,【点睛】此题考查了圆的综合题,勾股定理,全等三角形的性质和判定,圆周角定理,三角函数等知识,解题的关键是熟练掌握以上知识点以及正确作出辅助线,根据题意列出方程求解