《2022年北师大版八年级数学下册第一章三角形的证明章节练习试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2022年北师大版八年级数学下册第一章三角形的证明章节练习试卷(含答案详解).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第一章三角形的证明章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点M,作直线MN
2、交AB于点D,交AC于点E,连接CD若AC6,AB8,BC4,则BEC的周长( )A10B12C8D142、如图,于点,与交于点,若,则等于( )A20B50C70D1103、若以下列各组数值作为三角形的三边长,则不能围成直角三角形的是( )A4、6、8B3、4、5C5、12、13D1、3、4、如图,在RtABC中,ACB=90,BAC=30,ACB的平分线与ABC的外角的平分线交于E点,连接AE,则AEC的度数是( )A45B40C35D305、如图,ABC是等边三角形,点在边上,则的度数为( )A25B60C90D1006、如图,ABC中,ABACBC,如果要用尺规作图的方法在BC上确定一
3、点P,使PAPBBC,那么符合要求的作图痕迹是( )ABCD7、如图,一棵直立的大树在一次强台风中被折断,折断处离地面2米,倒下部分与地面成30角,这棵树在折断前的高度为()A米B米C4米D6米8、如图,在等腰ABC中,AB=BC,ABC=108,点D为AB的中点,DEAB交AC于点E,若AB=6,则CE的长为( )A4B6C8D109、如果三角形一边上的中线等于这条边的一半,那么这个三角形一定是( )A锐角三角形B直角三角形C钝角三角形D等腰三角形10、如图,在一个单位为1的方格纸上,A1A2A3,A3A4A5,A5A6A7,是斜边在x轴上,斜边长分别为2,4,6,.的等腰直角三角形若A1A
4、2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为()A-1008B-1010C1012D-1012第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、锐角ABC中,AB的垂直平分线与的垂直平分线交于点,则_2、如图,在ABC中,CACB,ACB120,E为AB上一点,DCEDAE60,AD2.4,BE7,则DE_3、如图,等腰ABC中,ABAC,A40,点D在边AC上,ADB100,则DBC的度数为_ 4、如图,在ABC中,三角形的两个外角和的平分线交于点E则_5、如图,点P是等边ABC内的一点,PA6,PB8,
5、PC10,若点P是ABC外的一点,且PABPAC,则APB的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,点A,B,C均落在格点上(1)计算线段AB的长度 ;(2)判断ABC的形状 ;(3)写出ABC的面积 ;(4)画出ABC关于直线l的轴对称图形A1B1C12、2021年10月10日是辛亥革命110周年纪念日为进一步弘扬辛亥革命中体现的中华民族的伟大革命精神,社区开展了系列纪念活动如图,有一块四边形空地,社区计划将其布置成展区,陈列有关辛亥革命的历史图片现测得,且(1)试说明;(2)求四边形展区(阴影部分)的面积
6、3、如图,ABC是等边三角形,D点是BC上一点,DEAB于点E,CE交AD于点P求APE的度数4、如图,在平面直角坐标系中,点O为坐标原点,点B0,n,点A在x轴的负半轴上,点Cm,0,连接AB、BC,且m+2+n-2=0,(1)求BCO的度数;(2)点P从A点出发沿射线AO以每秒2个单位长度的速度运动,同时,点Q从B点出发沿射线BO以每秒1个单位长度的速度运动,连接AQ、PQ,设APQ的面积为S,点P运动的时间为,求用表示S的代数式(直接写出的取值范围);(3)在(2)的条件下,当点P在x轴的正半轴上,点Q在y轴的负半轴上时,连接AQ、PQ,BQP=2ABC=2OAQ,且四边形ABPQ的面积
7、为25,求PQ的长5、如图,已知线段AB及线段AB外一点C,过点C作直线CD,使得小欣的作法如下:以点B为圆心,BC长为半径作弧;以点A为圆心,AC长为半径作弧,两弧交于点D;作直线CD则直线CD即为所求(1)根据小欣的作图过程补全图形;(2)完成下面的证明证明:连接AC,AD,BC,BD,点B在线段CD的垂直平分线上(_)(填推理的依据)_,点A在线段CD的垂直平分线上直线AB为线段CD的垂直平分线-参考答案-一、单选题1、A【分析】由垂直平分线的性质得,故的周长为,计算即可得出答案【详解】由题可知:为的垂直平分线,故选:A【点睛】本题考查垂直平分线的性质,掌握垂直平分线上的点到线段两端的距
8、离相等是解题的关键2、C【分析】由与,即可求得的度数,又由,根据两直线平行,同位角相等,即可求得的度数【详解】解:,故选:C【点睛】题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键3、A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形如果没有这种关系,这个就不是直角三角形【详解】解:A、42+6282,不符合勾股定理的逆定理,故本选项符合题意;B、32+42=52,符合勾股定理的逆定理,故本选项不符合题意;C、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;D、12+32=,符合勾股定理的
9、逆定理,故本选项符合题意故选:A【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断4、D【分析】作EFAC交CA的延长线于F,EGAB于G,EHBC交CB的延长线于H,根据角平分线的性质和判定得到AE平分FAG,求出EAB的度数,根据角平分线的定义求出ABE的度数,根据三角形内角和定理计算得到的度数,再计算出的度数即可【详解】解:作EFAC交CA的延长线于F,EGAB于G,EHBC交CB的延长线于H,CE平分ACB,BE平分ABD,EF=EH,EG=EH,EF=EG又EFAC,
10、EGAB,AE平分FAG,BAC=30,BAF=150,EAB=75,ACB=90,BAC=30,ABC=60,ABH=120,又BE平分ABD,ABE=60,AEB=180-EAB-ABE=45,ACB=90,BAC=30,ABD=120,CE是ACB的平分线,BE是ABC的外角平分线,EBD=60,BCE=45,CEB=60-45=15 故选:D【点睛】题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键,注意三角形内角和定理和角平分线的定义的正确运用5、D【分析】由等边三角形的性质及三角形外角定理即可求得结果【详解】是等边三角形C=60ADB=DBC+C=40+
11、60=100故选:D【点睛】本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关键6、D【分析】根据线段的垂直平分线的性质判断即可【详解】解:如图,连接AP,由作图可知,所画直线垂直平分线段AC,PAPC,PA+PBPC+PBBC,故选:D【点睛】本题考查作图基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型7、D【分析】根据直角三角形中30角所对的直角边等于斜边的一半,求出折断部分的长度,再加上离地面的距离就是折断前树的高度【详解】解:如图,根据题意BC2米,BAC30,AB2BC224米,2+46米故选:D【点睛】本题主要考查了含30度角的直
12、角三角形的性质,比较简单,熟记性质是解题的关键8、B【分析】由等腰三角形的等边对等角性质即可得出CAB=BCA=36,再由垂直平分线定理可知CAB=ABE=36,再由三角形内角和为180即可推出CEB=EBC,故CE=BC=AB=6【详解】AB=BC,ABC=108CAB=BCA=36又点D为AB的中点,DEAB交AC于点EAE=BEBC=CECE=AB=6故选:B【点睛】本题考查了等腰三角形的性质、垂直平分线的性质、三角形内角和的性质,熟悉使用有关性质是解题的关键9、B【分析】根据题意画出图形,利用等腰三角形的性质及三角形内角和定理即可得到答案【详解】如图,在ABC中,CD是边AB上的中线A
13、D=CD=BDA=DCA,B=DCBA+ACB+B=180 A+DCA+DCB+B=180即2A+2B=180A+B=90ACB=90ABC是直角三角形故选:B【点睛】本题考查了等腰三角形的性质及三角形内角和定理,熟练运用这两个知识是关键10、C【分析】首先确定角码的变化规律,利用规律确定答案即可【详解】解:各三角形都是等腰直角三角形,直角顶点的纵坐标的长度为斜边的一半,A3(0,0),A7(2,0),A11(4,0),20214=505余1,点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)2=1012,A2021的坐标为(1012,0)故选:C【点睛】本题是对点的坐标变化规律的
14、考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键二、填空题1、【分析】根据垂直平分线的性质可得,由三角形内角和定理可求出,从而可求出【详解】解:如图,根据直平分线的性质可得, 故答案为:136【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等解题的关键是利用等腰三角形的性质和三角形内角和定理2、4.6【分析】在AB上截取BF=AD,连接CF,通过证明ADCBFC,可得ACD=BCF,CD=CF,由“SAS”可得DCEFCE,可得DE=EF,即可求得结果【详解】解:如图,在AB上截取BFAD,连接CF,CACB
15、,ACB120,CABCBA30,DAE60DACDAECAB30DACCBA,且ADBF,ACBCADCBFC(SAS)ACDBCF,CDCF,ACBACE+ECF+BCFACE+ECF+ACDDCE+ECF120ECF60DCE,且CECE,DCCFDCEFCE(SAS)DEEFDEBEBFBEAD72.44.6,故答案为4.6【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当的辅助线构造全等三角形是本题的关键3、30【分析】先根据等腰三角形的性质和三角形内角和定理求出,再根据三角形外角的性质求解即可【详解】解:ABAC,A40,ADB=DBC+C=100,DBC=30,
16、故答案为:30【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,等腰三角形的性质,熟知相关知识是解题的关键4、2626度【分析】根据题意过点作三边的垂线段,根据角平分线的性质可得,进而判定是的角平分线,根据角平分线的定义即可求得【详解】解:如图,过点作三边的垂线段,三角形的两个外角和的平分线交于点E在的角平分线上,即是的角平分线故答案为:【点睛】本题考查了角平分线的性质与判定,证明是的角平分线是解题的关键5、150【分析】如图:连接PP,由PACPAB可得PAPA、PABPAC,进而可得APP为等边三角形易得PPAPAP6;然后再利用勾股定理逆定理可得BPP为直角三角形,且BPP90,
17、最后根据角的和差即可解答【详解】解:连接PP,PACPAB,PAPA,PABPAC,PAPBAC60,APP为等边三角形,PPAPAP6;PP2+BP2BP2,BPP为直角三角形,且BPP90,APB90+60150故答案为:150【点睛】本题主要考查了全等三角形的性质、等边三角形的判定与性质、勾股定理逆定理的应用等知识点,灵活应用相关知识点成为解答本题的关键三、解答题1、(1)(2)直角三角形(3)5(4)图形见解析【分析】(1)根据勾股定理计算即可;(2)求出BC、AC的长即可判断ABC的形状;(3)由(2)可知ABC是直角三角形,直接利用公式求面积;(4)分别画出A、B、C关于直线l的轴
18、对称点,再依次链接即可(1)(2),ABC的形状是一个直角三角形(3)由(2)可知ABC是直角三角形(4)图形如图所示:【点睛】本题考查网格中作对称及利用勾股定理求边长,属于常规题,解题的关键是熟练在网格中找到线段所在的直角三角形2、(1)见解析;(2)平方米【分析】(1)利用勾股定理的逆定理证明即可;(2)过点A作于点,利用勾股定理求出AE,再利用作差法求出阴影面积【详解】解:(1)中,BC=16m,CD=12m,BD=20m, , 是直角三角形,; (2)过点A作于点, , 在中,AB=26m, , , 【点睛】此题考查了勾股定理及勾股定理的逆定理的应用,等腰三角形三线合一的性质,熟练掌握
19、勾股定理及逆定理是解题的关键3、【分析】由题意易得,则有,然后可得,进而可证,则有,最后问题可求解【详解】解:是等边三角形,(SAS),【点睛】本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键4、(1);(2);(3)5【分析】(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;(3)过点作,连接,根据四边形的面积求得,进而求得,由,
20、设,则,证明,进而可得,进一步导角可得,根据等角对等边即可求得【详解】(1)是等腰直角三角形,(2)当点在轴正半轴时,如图, ,当点在原点时,都在轴上,不能构成三角形,则时,不存在当点在轴负半轴时,如图, , ,综上所述:(3)如图,过点作,连接,设,则, 是等腰直角三角形在和中,是等腰直角三角形中,又【点睛】本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键5、(1)见解析;(2)到线段两个端点的距离相等的点在线段的垂直平分线上;AD;【分析】(1)根据作图的作法作出图形即可求解;(2)完连接AC,AD,BC,BD,根据到线段两个端点的距离相等的点在线段的垂直平分线上即可求解【详解】解:(1)作图如图所示:(2)证明:连接AC,AD,BC,BD,点B在线段CD的垂直平分线上(到线段两个端点的距离相等的点在线段的垂直平分线上)(填推理的依据)AD,点A在线段CD的垂直平分线上直线AB为线段CD的垂直平分线故答案为:到线段两个端点的距离相等的点在线段的垂直平分线上;AD【点睛】本题考查作图,垂直平分线的判定,解题的关键是理解到线段两个端点的距离相等的点在线段的垂直平分线上