2021-2022学年北师大版八年级数学下册第六章平行四边形课时练习试卷(含答案详解).docx

上传人:可****阿 文档编号:30701224 上传时间:2022-08-06 格式:DOCX 页数:27 大小:349.96KB
返回 下载 相关 举报
2021-2022学年北师大版八年级数学下册第六章平行四边形课时练习试卷(含答案详解).docx_第1页
第1页 / 共27页
2021-2022学年北师大版八年级数学下册第六章平行四边形课时练习试卷(含答案详解).docx_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《2021-2022学年北师大版八年级数学下册第六章平行四边形课时练习试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年北师大版八年级数学下册第六章平行四边形课时练习试卷(含答案详解).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第六章平行四边形课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AD是ABC的角平分线,DEAB,DFAC,垂足分别为E,F,连接EF,EF与AD相交于点G,则下列关系

2、正确的是( )AB且CD2、下列A:B:C:D的值中,能判定四边形ABCD是平行四边形的是( )A1:2:3:4B1:4:2:3C1:2:2:1D3:2:3:23、若一个正多边形的各个内角都是140,则这个正多边形是()A正七边形B正八边形C正九边形D正十边形4、如图,D、E分别为ABC的边AB、AC的中点连接DE,过点B作BF平分ABC,交DE于点F若EF4,AD7,则BC的长为()A22B20C18D165、如图,小明从点A出发沿直线前进10m到达点B,向左转,后又沿直线前进10m到达点C,再向左转30后沿直线前进10m到达点照这样走下去,小明第一次回到出发点A,一共走了( )米A80B1

3、00C120D1406、在平行四边形中,于,于, BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:;,其中正确的结论是( )ABCD7、如图,一只蚂蚁从点A出发沿直线前进5m,到达点B后,向左转角度,再沿直线前进5m,到达点C后,又向左转角度,照这样爬下去,第一次回到出发点,蚂蚁共爬了60m,则每次向左转的度数为( )A30B36C40D608、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )A三角形B四边形C五边形D六边形9、如图,在六边形中,若,则( )A180B240C270D36010、如图,M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN

4、,AM交BN于点P,则APN的度数是( )A120B118C110D108第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正多边形的每个外角都是45,则这个正多边形是正_边形2、在四边形ABCD中,若AB/CD,BC_AD,则四边形ABCD为平行四边形3、如图,在ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC6,PQ4,则PCAQ的最小值为_4、若正n边形的内角和是1980,则n的值是_5、如图,在四边形ABCD中,ABBCBD,ABC110,则ADC的度数为 _三、解答题(5小题,每小题10分,共计5

5、0分)1、如图,在ABC中,ABAC,ADBC于点D(1)若DEAB交AC于点E,证明:ADE是等腰三角形;(2)若BC12,DE5,且E为AC中点,求AD的值2、ABC和ADE均为等腰直角三角形,BACDAE90,将ADE绕点A逆时针旋转一周,连接DB,将线段DB绕点D逆时针旋转90得DF,连接EF(1)如图1,当D在AC边上时,线段CD与EF的关系是 , (2)如图2,当D在ABC的内部时,(1)的结论是否成立?说明理由;(3)当AB3,AD,DAC 45时,直接写出DEF的面积3、如图,ABCD中,点E、F分别在AB、CD上,且BEDF求证:AFEC4、(问题情景)课外兴趣小组活动时,老

6、师提出了如下问题:如图1,在ABC中,若AB10,AC6,求BC边上的中线AD的取值范围小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DEAD,连接BE请根据小明的方法思考:(1)由已知和作图能得到ADCEDB,其依据是 ,请选择正确的一项ASSS;BSAS;CAAS;DHL(2)由“三角形的三边关系”可求得AD的取值范围是 (初步运用)(3)如图2,在四边形ABCD中,ABCD,点E是BC的中点,若AE是BAD的平分线,试猜想线段AB,AD,DC之间的数量关系,并证明你的猜想(灵活运用)(4)如图3,AD是ABC的中线,BE交AC于E,交AD于F,且AEEF,若EF5,EC

7、3,求线段BF的长;(拓展延伸)(5)如图4,CB是AEC的中线,CD是ABC的中线,且ABAC,下列四个选项中:AACDBCD BCE2CD CBCDBCE DCDCB所有正确选项的序号是 5、(1)计算:(2x2)3(xy)2(2x)(2)已知一个多边形的内角和比它的外角和的3倍少180,求这个多边形的边数-参考答案-一、单选题1、B【分析】证明ADEADF(HL),利用全等三角形的性质以及线段的垂直平分线的判定一一判断即可【详解】解:AD平分BAC,BAD=CAD,DEAB,DFAC,DE= DF,在ADE和ADF中,ADEADF(HL),AE= AF,AD是线段EF的垂直平分线,ADE

8、F且EG=FG,故选项B正确;DEAB,DFAC,AED=AFD=90,BAC+EDF=360-AED-AFD =180,BAC不一定等于90,EDF也不一定等于90,故选项C错误;EDF90,而AFD=90,EDF+AFD180,DE与AC不一定平行,故选项D错误;AED=90,DE与AE不一定相等,AG与DG也不一定相等,故选项A错误;故选:B【点睛】本题考查了全等三角形的判定和性质,线段垂直平分线的判定和性质,四边形内角和定理,熟记各图形的性质并准确识图是解题的关键2、D【分析】两组对角分别相等的四边形是平行四边形,所以A和C是对角,B和D是对角,对角的份数应相等【详解】解:根据平行四边

9、形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件故选:D【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法3、C【分析】根据多边形的内角和公式,可得答案【详解】解:设多边形为n边形,由题意,得(n-2)180=140n,解得n=9,故选:C【点睛】本题考查了正多边形,利用多边形的内角和是解题关键4、A【分析】根据D、E分别为ABC的边AB、AC的中点,可得DE是ABC的中位线,则,然后证明ABF=DFB,得到DF=BD=7,则DE=DF+EF=11,再由,进行求解即可【详解】解:

10、D、E分别为ABC的边AB、AC的中点,DE是ABC的中位线,DFB=CBF,BF平分ABC,ABF=CBF,ABF=DFB,DF=BD=7,DE=DF+EF=11,故选A【点睛】本题主要考查了三角形中位线定理,等腰三角形的性质与判定,角平分线的定义,平行线的性质与判定,解题的关键在于能够熟练掌握三角形中位线定理5、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案.【详解】解:由 可得:小明第一次回到出发点A,一个要走米,故选C【点睛】本题考查的是多边形的外角和的应用

11、,掌握“由多边形的外角和为得到一共要走12个10米”是解本题的关键.6、A【分析】先判断DBE是等腰直角三角形,根据勾股定理可推导得出BD=BE,可判断不正确;根据BHE和C都是HBE的余角,可得BHE=C,再由A=C,可判断正确;证明BEHDEC,从而可得BH=CD,再由AB=CD,可判断正确;利用对应边不等可判断不正确,据此即可得到选项【详解】解:DBC=45,DEBC于E,DEB=90,BDE=180-DBE-DEB=180-45-90=45,BE=DE,在RtDBE中,BE2+DE2=BD2,BD=BE,故正确; DEBC,BFDC,HBE+BHE=90,C+FBC=90,BHE和C都

12、是HBE的余角,BHE=C,又在ABCD中,A=C,A=BHE,故正确;在BEH和DEC中,BEHDEC(AAS),BH=CD,四边形ABCD为平行四边形,AB=CD,AB=BH,故正确;BEBHBE=DE,BCBFBH=DC,FBC=EDC,不能得到BCFDCE,故错误故选A【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定与性质、勾股定理、全等三角形的判定与性质等,熟练掌握相关性质与定理是解题的关键7、A【分析】蚂蚁第一次回到出发点,爬行路线是一个多边形,是这个多边形的外角,根据正多边形的外角和定理即可得出答案【详解】解:蚂蚁爬行路线是一个多边形,边数是,由于每个外角都相等,所以 ,

13、故选:A【点睛】本题主要考查正多边形外角和定理,解题关键是要牢记多边形的外角和为3608、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形【详解】解:多边形的外角和是360度,又多边形的外角和是内角和的2倍,多边形的内角和是180度,这个多边形是三角形故选:A【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理9、C【分析】根据多边形外角和求解即可【详解】解: , ,故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和是解题的关键10、D【分析】由五边形的性质得出AB=BC,ABM=C,证明ABMB

14、CN,得出BAM=CBN,由BAM+ABP=APN,即可得出APN=ABC,即可得出结果【详解】解:五边形ABCDE为正五边形,AB=BC,ABM=C,在ABM和BCN中,ABMBCN(SAS),BAM=CBN,BAM+ABP=APN,CBN+ABP=APN=ABC= APN的度数为108;故选:D【点睛】本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键二、填空题1、八【分析】根据多边形的外角和等于即可得【详解】解:因为多边形的外角和等于,所以这个正多边形的边数是,即这个正多边形是正八边形,故答案为:八【点睛】本题考查了多边形的外角和,

15、熟记多边形的外角和等于是解题关键2、【分析】根据平行四边形的判定:两组对边分别平行的四边形是平行四边形即可解决问题【详解】解:根据两组对边分别平行的四边形是平行四边形可知:AB/CD,BC/AD,四边形ABCD为平行四边形故答案为:/【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键3、【分析】利用平行四边形的知识,将的最小值转化为的最小值,再利用勾股定理求出MC的长度,即可求解;【详解】过点A作且,连接MP,四边形是平行四边形,将的最小值转化为的最小值,当M、P、C三点共线时,的最小,在中,;故答案是:【点睛】本题主要考查了平行线的判定与性质,勾股定理,准确计算是解

16、题的关键4、13【分析】直接根据内角和公式计算即可求解【详解】解:由题意得:解得n=13故答案为:13【点睛】主要考查了多边形的内角和公式,解题的关键在于熟记多边形内角和公式:5、125125度【分析】利用等腰三角形的性质和四边形内角和定理可得答案【详解】ABBCBD,AADB,BDCC,A+ADB+C+BDC+ABD+CBD360,2ADB+2CDB+ABC360,2(ADB+CDB)+110360,ADB+CDB125,即ADC125,故答案为:125【点睛】考查等腰三角形的性质以及四边形的内角和,掌握等腰三角形的性质是解题的关键三、解答题1、(1)见解析;(2)8【分析】(1)根据“三线

17、合一”性质先推出BAD=CAD,再结合平行线的性质推出BAD=ADE,从而得到ADE=EAD,即可根据“等角对等边”证明;(2)根据题意结合中位线定理可先推出AC=2DE,然后在RtADC中利用勾股定理求解即可【详解】(1)证:在ABC中,ABAC,ABC为等腰三角形,ADBC于点D,由“三线合一”知:BAD=CAD,DEAB交AC于点E,BAD=ADE,CAD=ADE,即:ADE=EAD,AE=DE,ADE是等腰三角形;(2)解:由“三线合一”知:BD=CD,BC=12,DC=6,E为AC中点,DE为ABC的中位线,AB=2DE,AC=AB=2DE=10,在RtADC中,AD=8【点睛】本题

18、考查等腰三角形的性质与判定,勾股定理解三角形,以及三角形的中位线定理等,掌握等腰三角形的基本性质,熟练运用中位线定理和勾股定理计算是解题关键2、(1)CDEF,CD=EF;(2)结论成立,理由见解析;(3)1或2【分析】(1)如图所示,连接CE,延长BD交CE于H,先证明BADCAE得到BD=CE,ABD=ACE,然后证明四边形CDFE是平行四边形,即可得到CDEF,CD=EF;(2)连接CE,延长BD交CE于点H,交AC于点G, 类似(1)进行证明即可;(3)分两种情况:当D在直线AC的左侧和当D在直线AC的右侧,分别讨论求解即可【详解】解:(1)CDEF ,CD=EF,理由如下:如图所示,

19、连接CE,延长BD交CE于H,ABC和ADE均为等腰直角三角形,BACDAE90,AB=AC,AE=AD,BADCAE(SAS),BD=CE,ABD=ACE,ABD+ADB=90,ADB=CDH,ACE+CDH=90,BHC=90,BHE=90,由旋转的性质可得BDF=90,BD=FD,BDF=BHE=90,BD=CE,DFCE,四边形CDFE是平行四边形,CDEF,CD=EF;(2)结论成立,理由如下:连接CE,延长BD交CE于点H,交AC于点G,BAC=DAE=90,DAB=EAC=90-DAC,AB=AC ,AD=AE,ADBAEC(SAS),BD=CE ,DBA=ECA,BGA+DBA

20、=90,BGA=CGH ,DBA=ECA,CGH+ECA=90,DHE=90,由旋转的性质可得BDF=90,BD=FD,DFCE,DF=BD,DFCE,CD=CE, 四边形DCEF是平行四边形 CDEF,CD=EF;(3)如图3所示,当DAC=45时,设AC与DE交于H,ADE=90,EAC=ADC=45,又AD=AE,;,由(2)可知四边形DFEC是平行四边形,;如图4所示,当DAC=45时,DAC=ADE=45,ACDE,同理可证四边形CEFD是平行四边形,综上所述,DEF的面积为1或2【点睛】本题主要考查了旋转的性质,等腰直角三角形的性质与判定,全等三角形的性质与判定,平行四边形的性质与

21、判定,解题的关键在于能够正确作出辅助线构造平行四边形求解3、证明见解析【分析】先证明再证明可得四边形是平行四边形,于是可得结论.【详解】解: ABCD, BEDF,AE=CF,AE/CF 四边形是平行四边形,【点睛】本题考查的是平行四边形的判定与性质,掌握“一组对边平行且相等的四边形是平行四边形”是解本题的关键.4、(1)B,(2)2AD8,(3)ADAB+DC;证明见解析,(4)8(5)B、C【分析】(1)根据全等三角形的判定定理解答;(2)根据三角形的三边关系计算;(3)延长AE交DC延长线于点M,类似(1)证明三角形全等,根据全等三角形的性质解答;(4)延长AD到M,使ADDM,连接BM

22、,证明ADCMDB,根据全等三角形的性质解答;(5)根据三角形的中线的概念、等腰三角形的性质、三角形的中位线定理以及全等三角形的判定和性质进行分析判断【详解】解:(1)在ADC和EDB中,ADCEDB(SAS),故选:B;(2)由(1)得:ADCEDB,ACBE6,在ABE中,ABBEAEAB+BE,即1062AD10+6,2AD8,故答案为:2AD8;(3)ADAB+DC;延长AE交DC延长线于点N, 点E是BC的中点,CEBE,ABCD,NCEABE,在NCE和ABE中,NCEABE(SAS),CNAB,BAEN,AE是BAD的平分线,BAEDAE,EADN,ADDNAB+DC; (4)延

23、长AD到M,使ADDM,连接BM,如图所示:AEEFEF5,ACAE+EC5+38,AD是ABC中线,CDBD,在ADC和MDB中,ADCMDB(SAS),BMAC,CADM,AEEF,CADAFE,AFEBFD,BFDCADM,BFBMAC8;(5)取CE的中点F,连接BFABBE,CFEF,BFAC,BF0.5ACCBFACBACAB,ACBABCCBFDBC又CD是三角形ABC的中线,ACAB2BDBDBF又BCBC,BCDBCF,CFCDBCDBCECE2CD故B、C选项正确若要ACDBCE,则需ACBDCE,又ACBABCBCE+EDCE,则需EBCD根据全等,得BCDBCE,则需EBCE,则需BCBE,显然不成立,故A选项错误;若要CDCB,则需ABCD,也不一定成立,故D选项错误;故答案为:B、C【点睛】本题以阅读为背景考查了三角形的全等和四边形等知识,解题的关键是通过辅助线构造全等三角形5、(1);(2)这个多边形的边数为7边形【分析】(1)按照整式的乘除法则计算即可;(2)设这个多边形的边数为n,根据内角和定理列出方程求解即可【详解】(1)解:原式(2)设这个多边形的边数为n,依题意得:解得:答:这个多边形的边数为7边形【点睛】本题考查了整式的运算和多边形内角和与外角和,解题关键是熟练运用整式乘除法法则进行计算,根据多边形内角和和外角和列方程

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁