《2022年精品解析北师大版八年级数学下册第三章图形的平移与旋转综合训练试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年精品解析北师大版八年级数学下册第三章图形的平移与旋转综合训练试题(无超纲).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是中心对称图形的是( )ABCD2、如图,在ABC中,BAC130,将ABC绕点C逆时针旋转得到DE
2、C,点A,B的对应点分别为D,E,连接AD当点A,D,E在同一条直线上时,则BAD的大小是()A80B70C60D503、下列图形中,是中心对称图形的是( )ABCD4、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )A先向左平移4个单位长度,再向上平移4个单位长度B先向左平移4个单位长度,再向上平移8个单位长度C先向右平移4个单位长度,再向下平移4个单位长度D先向右平移4个单位长度,再向下平移8个单位长度5、在平面直角坐标系中,若点与点关于原点对称,则点在( )A第一象限B第二象限C第三象限D第四象限6、下列图形中,既是中心对称图形,又是轴对称图形的个数是(
3、)A1B2C3D47、ABC中,ACB=90,A=,以C为中心将ABC旋转角到A1B1C(旋转过程中保持ABC的形状大小不变)B1点恰落在AB上,如图,则旋转角与的数量关系为()ABCD8、如图,的顶点坐标为,若将绕点按顺时针方向旋转90,再向左平移2个单位长度,得到,则点的对应点的坐标是( )ABCD9、下列图形既是轴对称图形又是中心对称图形的是()ABCD10、下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点关于原点的对称点坐标为_2、如图,在平面直角坐标系中,A(0,1),B(1,0
4、),对RtABO沿轴依次作旋转变换,分别得到1,2,3,4,则20的直角顶点横坐标是_ 3、如图,ABC中,ACB=90,A=28,若以点C为旋转中心,将ABC逆时针旋转到DEC的位置,点在边DE上,则旋转角的度数是_4、点A(2,1)绕点B(1,0)旋转180得到点C则点C坐标为 _5、若点与点关于原点对称,则_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,点,分别在边,上,且,此时,成立(1)将绕点逆时针旋转时,在图中补充图形,并直接写出的长度;(2)当绕点逆时针旋转一周的过程中,与的数量关系和位置关系是否仍然成立?若成立,请你利用图证明,若不成立请说明理由;(3)将绕点逆
5、时针旋转一周的过程中,当,三点在同一条直线上时,请直接写出的长度2、如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(4,3)、B(3,1)、C(1,3)(1)请按下列要求画图:将ABC先向右平移4个单位长度、再向上平移2个单位长度,得到A1B1C1,画出A1B1C1;A2B2C2与ABC关于原点O成中心对称,画出A2B2C2(2)在(1)中所得的A1B1C1和A2B2C2关于点M成中心对称,请写出对称中心M点的坐标 3、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC的顶点均在格点上,点C的坐标为(0, -1), (1)写出A、B两点的坐标;(
6、2)画出ABC关于y轴对称的A1B1C1 ; (3)画出ABC绕点C旋转180后得到的A2B2C24、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影(1)请在下面三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);(2)在两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同)5、如图所示,平移ABC,使点A移动到点A,画出平移后的ABC-参考答案-一、单选题1、B【分析】根据中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋
7、转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形【详解】选项、均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,故选:【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合2、A【分析】根据三角形旋转得出,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到DAC=50,由此即可求解【详解】证明:绕点C逆时针旋转得到,ADC=DAC,点A,D,E在同一条直线上,DAC=50,BAD=BAC-DAC=80
8、故选A【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质3、A【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180,如果旋转后与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做中心对称进行解答即可【详解】A、是中心对称图像,故该选项符合题意;B、不是中心对称图像,故该选不项符合题意;C、不是中心对称图像,故该选不项符合题意;D、不是中心对称图像,故该选不项符合题意;故选:A【点睛】本题考查了中心对称图形的识别,掌握中心对称图形的定义是关键4、B【分析】利用平移中点的变化规律求解即可【详解】解:在平面直角坐标系中,点(3,-4
9、)的坐标变为(-1,4),点的横坐标减少4,纵坐标增加8,先向左平移4个单位长度,再向上平移8个单位长度故选:B【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度5、B【分析】根据点(x,y)关于原点对称的点的坐标为(x,y)可求得m、n值,再根据象限内点的坐标的符号特征即可解答【详解】解:点与关于原点对称,m=-2,m-n=3,n=1,点M(-2,1)在第二象限,故选:B【点
10、睛】本题考查平面直角坐标系中关于原点对称的点的坐标、点所在的象限,熟知关于原点对称的点的坐标特征是解答的关键6、B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解【详解】第一个图形是中心对称图形,又是轴对称图形,第二个图形是中心对称图形,又是轴对称图形,第三个图形不是中心对称图形,是轴对称图形,第四个图形不是中心对称图形,是轴对称图形,综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形故选:B【点睛】点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合
11、7、D【分析】由旋转性质以及等腰三角形性质计算即可【详解】由旋转性质可知A=A1=,BC=B1C,A1CA+ACB1=90,ACB1+B1CB=90,B1CB=A1CA =,又ABC+A=90,A1B1C+A1=90ABC=A1B1C=等腰三角形CB1B中,CB1B=CBB1=,中CB1B+CBB1+B1CB=180故选:D【点睛】本题考查了旋转的性质,等腰三角形性质以及三角形内角和等,旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等8、A【分析】画出旋转平移后的图形即可解决问题【详解】解:旋转,平移后的图形如图所示,故选:
12、A【点睛】本题考查坐标与图形变化旋转,解题的关键是理解题意,学会利用图象法解决问题9、B【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A不是中心对称图形,也不是轴对称图形,故此选项不合题意;B是轴对称图形,也是中心对称图形,故此选项符合题意;C是轴对称图形,不是中心对称图形,故此选项不合题意;D不是轴对称图形,是中心对称图形,故此选项不合题意故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么
13、这个图形就叫做中心对称图形10、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,
14、图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题1、(-4,7)【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(-x,-y),进而得出答案【详解】解:点关于原点的对称点坐标为(-4,7),故答案是:(-4,7)【点睛】此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键2、【分析】先利用勾股定理计算出AB,从而得到ABC的周长为,根据旋转变换可得OAB的旋转变换为每3次一个循环,由于203=62,20与2状态相同,然后计算即可得到20的直角顶点横坐标【详解】解:A(0,1),B(1,0),OA
15、=1,OB=1,,ABO的周长为,如图所示,作HNx轴,第1次的直角顶点的横坐标为0,第2次的直角顶点的横坐标为(三线合一),第3次的直角顶点的横坐标为,以后每连续3次后与原来的状态一样,203=62,20与2状态相同,其横坐标为:故答案为:【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标常见的是旋转特殊角度如:30,45,60,90,180解决本题的关键是确定循环的次数,属于中考选择题中的压轴题3、56【分析】直接利用旋转的性质得出EC=BC,进而利用三角形内角和定理得出E=ABC=62,即可得出ECB的度数,得出答案即可【详解】
16、解:以点C为旋转中心,将ABC旋转到DEC的位置,点B在边DE上,EC=BC,ACB=90,A=28,E=ABC=62,EBC=62,ECB=180-62-62=56,则旋转角的度数是56故答案为:56【点睛】此题主要考查了旋转的性质以及三角形内角和定理,得出E=ABC的度数是解题关键4、【分析】过A、C两点向x轴作垂线,得到CF和AE相等,BF和BE相等,即可得到结果【详解】如图,过A、C两点向x轴作垂线分别交于点、,点绕点旋转得到点,故答案为: 【点睛】本题考查旋转的性质,掌握旋转的性质是解题的关键5、【分析】利用原点对称的点的坐标特征可知:M点和N点的横坐标之和与纵坐标之和都为0,得到关
17、于、的二元一次方程组,解方程求出、的值,进而求出【详解】和点关于原点对称, 解得: , 故答案为:【点睛】本题主要是考察了关于原点对称的点的特征,熟练掌握关于原点对称的点的横坐标之和与纵坐标之和都为0,是解决此类题的关键三、解答题1、(1)补充图形见解析;(2),仍然成立,证明见解析;(3)或【分析】(1)根据旋转作图的方法作图,再根据勾股定理求出BE的长即可;(2)根据SAS证明得AD=BE,1=2,再根据1+3+4=90得23+4=90,从而可得出结论;(3)分两种情况,运用勾股定理求解即可【详解】解:(1)如图所示,根据题意得,点D在BC上,是直角三角形,且BC=,CE= 由勾股定理得,
18、;(2),仍然成立.证明:延长交于点,又,在中,.(3)当点D在AC上方时,如图1所示,同(2)可得AD=BE 同理可证 在RtCDE中,DE= 在RtACB中, 设AD=BE=x,在RtABE中, 解得, 当点D在AC下方时,如图2所示,同(2)可得AD=BE 同理可证 在RtCDE中,DE= 在RtACB中, 设AD=BE=x,在RtABE中, 解得, .所以,AD的值为或【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等知识,熟练解答本题的关键2、(1)见解析;见解析;(2)M(2,1)【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;利用中心
19、对称的性质分别作出A,B,C的对应点A2,B2,C2即可;(3)对应点连线的交点M即为所求【详解】解:(1)如图,A1B1C1即为所求;如图,A2B2C2即为所求;(2)如图,点M即为所求,M(2,1),故答案为:(2,1)【点睛】本题考查作图旋转变换,平移变换等知识,解题的关键是掌握旋转变换,平移变换的性质,属于中考常考题型3、(1)A(-1,2) B(-3,1); (2)见解析;(3)见解析【分析】(1)根据 A,B 的位置写出坐标即可;(2)分别求出 A,B,C 的对应点 A1,B1,C1的坐标,然后描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1
20、A1即可;(3)分别求出 A,B,C 的对应点A2(1,-4)、B2(3,-3)、C2(0,-1),然后描点,顺次连结A2B2, B2C2,C2A2即可【详解】(1)由题意 A(-1,2),B(-3,1)(2)ABC关于y轴对称的A1B1C1,对应点的坐标纵坐标不变,横坐标互为相反数,A(-1,2),B(-3,1)C(0,-1),A1(1,2),B1(3,1),C1(0,-1),在平面直角坐标系中描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1,如图A1B1C1即为所求(3)ABC绕点C旋转180后得到的A2B2C2,关于点C成中心对称,对应点的横坐
21、标为互为相反数,A(-1,2),B(-3,1)C(0,-1),A2、B2、C2的横坐标分别为1,3,0,纵坐标分别为-1-(2+1)=-4,-1-(1+1)=-3,-1,A2(1,-4)、B2(3,-3)、C2(0,-1),在平面直角坐标系中描点A2(1,-4)、B2(3,-3)、C2(0,-1),顺次连结A2B2, B2C2,C2A2,如图A2B2C2即为所求【点睛】本题主要考查图形与坐标,作图-轴对称变换,旋转变换等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型4、(1)见解析;(2)见解析【分析】(1)直接利用轴对称图形的性质得出符合题意的答案;(2)直接利用中心对称图形的性质得出符合题意的答案【详解】解:(1)如图所示:都是轴对称图形;(2)如图所示:都是中心对称图形【点睛】此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键5、见解析【分析】先连接AA然后作AA的平行线,利用平移性质分别确定A、B、C平移后的对应点A、B、C,然后再顺次连接即可【详解】解:如图所示,(1)连接AA,过点B作AA的平行线,在上截取BBAA,则点B就是点B的对应点(2)用同样的方法做出点C的对应点C,连接AB、BC、CA,就得到平移后的三角形ABC【点睛】本题主要考查了平移作图,根据题意确定A、B、C平移后的对应点A、B、C是解答本题的关键