《2021-2022学年人教版八年级数学下册第十九章-一次函数重点解析练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版八年级数学下册第十九章-一次函数重点解析练习题(含详解).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十九章-一次函数重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,A、B两地相距,甲、乙两人沿同一条路线从A地到B地甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以的速度
2、匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达甲、乙两人离开A地的距离与时间的关系如图所示,则乙出发几小时后和甲相遇?( )A小时B小时C小时D小时2、甲、乙两名同学在一段2000m长的笔直公路上进行自行车比赛,开始时甲在起点,乙在甲的前方200m处,他们同时同向出发匀速前进,甲的速度是8m/s,乙的速度是6m/s,先到达终点者在终点处等待设甲、乙两人之间的距离是y(m),比赛时间是x(s),整个过程中y与x之间的函数关系的图象大致是()ABCD3、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:火车的速度为30米/秒;火
3、车的长度为120米;火车整体都在隧道内的时间为35秒;隧道长度为1200米其中正确的结论是( )ABCD4、如图,一次函数yax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A关于x的不等式ax+b0的解集是x2B关于x的不等式ax+b0的解集是x2C关于x的方程ax+b0的解是x4D关于x的方程ax+b0的解是x25、一次函数ymxn(m,n为常数)的图象如图所示,则不等式mxn0的解集是( )Ax2Bx2Cx3Dx36、在平面直角坐标系中,把直线沿轴向右平移两个单位长度后得到直线的函数关系式为( )ABCD7、一次函数yx2的图象不经过( )A第一象限B第二象
4、限C第三象限D第四象限8、若直线ykx+b经过第一、二、三象限,则函数ybxk的大致图象是()ABCD9、关于函数yx,以下说法错误的是( )A图象经过原点B图象经过第二、四象限C图象经过点Dy的值随x的增大而增大10、已知点A(,m),B(4,n)是一次函数y2x3图象上的两点,则m与n的大小关系是()AmnBmnCmnD无法确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线l1:yx+2与x轴交于点A,与y轴交于点B直线l2:y4x4与y轴交于点C,与x轴交于点D,直线l1,l2交于点P若x轴上存在点Q,使以A、C、P、Q为顶点的四边形是平行四边形,则点
5、Q的坐标是 _2、在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,若两人之间保持的距离不超过4km时,能够用无线对讲机保持联系,则甲、乙两人总共有_h可以用无线对讲机保持联系3、直线yx3向下平移5个单位长度,得到新的直线的解析式是_.4、对于直线y=kx+b(k0):(1)当k0,b0时,直线经过第_象限;(2)当k0,b0时,直线经过第_象限;(3)当k0时,直线经过第_象限;(4)当k0,b,则_(填“”“”或“”)三、解答题(5小题,每小题10分,共计50分
6、)1、如图,在平面直角坐标系中,直线l1的解析式为yx,直线l2的解析式为y12x3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C(1)求点A、点B、点C的坐标,并求出COB的面积;(2)若直线l2上存在点P(不与B重合),满足SCOPSCOB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由2、甲、乙两人从同一点出发,沿着跑道训练400米速度跑,乙比甲先出发,并且匀速跑完全程,甲出发一段时间后速度提高为原来的3倍设乙跑步
7、的时间为x(s),甲、乙跑步的路程分别为y1(米)、y2(米),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲比乙晚出发 s,甲提速前的速度是每秒 米,m ,n ;(2)当x为何值时,甲追上了乙?(3)在甲提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过30米时,请你直接写出x的取值范围3、如图,已知点A(-2,4),B(4,2),C(2,-1)(1)先画出ABC,再作出ABC关于x轴对称的图形A1B1C1,则点C1的坐标为_;(2)P为x轴上一动点,请在图中画出使PAB的周长最小时的点P,并直接写出此时点P的坐标(保留作图痕迹)4、如图,已知直线A
8、B的解析式为yxm,线段CD所在直线解析式为yxn,连接AD,点E为线段OA上一点,连接BE,使得EBO2BAD(1)求证:AODBOC;(2)求证:BEEC;(3)当AD10,BE55时,求m与n的值5、如图,一次函数y=kx+b的图象与x轴、y轴分别交于点A、B(0,6),与正比例函数y=3x的图象交于点C(1,m)(1)求一次函数y=kx+b的解析式;(2)比较SOCA和SOCB的大小;(3)点N为正比例函数图象上的点(不与C重合),过点N作NEx轴于点E(n,0),交直线y=kx+b于点D,当NDAB时,求点N的坐标-参考答案-一、单选题1、A【解析】【分析】先标记字母如图,求出点C,
9、D,E坐标,利用待定系数法求OE与CD解析式,根据路程相等列方程,解方程求出时间x,再求出乙追上甲的时间即可【详解】解:乙以的速度匀速行驶1小时到C,C(2,2),点D(4,20)点E(5,20),设OE解析式为,CD解析式为,点E在图像上,解得,OE解析式为,点C、D在图像上,解得,CD解析式为,乙出发后和甲相遇路程相等得,解得,乙出发时后和甲相遇故选择A【点睛】本题考查一次函数行程问题应用,待定系数法求解析式,解二元一次方程组,解题关键是根据路程相等列出方程2、C【解析】【分析】先算出甲到达终点的时间,由此算出二者之间的最大距离,再算出乙到达终点的时间,由此找出点的坐标,结合点的坐标利用待
10、定系数法求出函数解析式,根据函数解析式分析四个选项即可得出结论【详解】解:当甲跑到终点时所用的时间为:20008250(秒),此时甲乙间的距离为:20002006250300(米),乙到达终点时所用的时间为:(2000200)6300(秒),最高点坐标为(250,300)甲追上乙时,所用时间为(秒)当0x100时,设y关于x的函数解析式为yk1x+b1,有,解得:,此时y2x+200;当100x250时,设y关于x的函数解析式为yk2x+b2,有,解得:,此时y2x200;当250x300时,设y关于x的函数解析式为yk3x+b3,有,解得:,此时y6x+1800整个过程中y与x之间的函数图象
11、是C故选:C【点睛】此题考查了一次函数的应用,解题的关键是理解题意,找到题中的关键点,利用待定系数法求得每段函数解析式3、D【解析】【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案【详解】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒故正确;火车的长度是150米,故错误;整个火车都在隧道内的时间是:45-5-5=35秒,故正确;隧道长是:4530-150=1200(米),故正确故选:D【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题
12、的相应解决4、D【解析】【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案【详解】解:A、由图象可知,关于x的不等式ax+b0的解集是x2,故不符合题意;B、由图象可知,关于x的不等式ax+b0的解集是x2,故不符合题意;C、由图象可知,关于x的方程ax+b0的解是x2,故不符合题意;D、由图象可知,关于x的方程ax+b0的解是x2,符合题意;故选:D【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解5、D【解析】【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答【详解】由图象知:
13、不等式的解集为x3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键6、D【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答【详解】解:把直线沿x轴向右平移2个单位长度,可得到的图象的函数解析式是:y=-2(x-2)+3=-2x+7故选:D【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键7、A【解析】【分析】因为k10,b20,根据一次函数ykx+b(k0)的性质得到图象经过第二、四象限,图象与y轴的交点在x轴下方,于是可判断一次函数yx2的图象不经过第一象限【详解】解:一次函数yx2中k10,图象经过第二、四象限;又
14、b20,一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第三象限,一次函数yx2的图象不经过第一象限故选:A【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系;k0时,直线必经过一、三象限;k0时,直线必经过二、四象限;b0时,直线与y轴正半轴相交;b=0时,直线过原点;b0时,直线与y轴负半轴相交8、D【解析】【分析】直线ykx+b,当时,图象经过第一、二、三象限;当时,图象经过第一、三、四象限;当时,图象经过第一、二、四象限;当时,图象经过第二、三、四象限【详解】解:直线ykx+b经过第一、二、三象限
15、,则,时,函数ybxk的图象经过第一、三、四象限,故选:D【点睛】本题考查一次函数的图象与性质,是重要考点,掌握相关知识是解题关键9、D【解析】【分析】根据正比例函数的定义与性质判定即可【详解】解:A、由解析式可得它是正比例函数,故函数图象经过原点,说法正确,不合题意;B、由k0可得图象经过二、四象限,说法正确,不合题意;C、当x时,y2,图象经过点,说法正确,不合题意;D、由k0可得y的值随x的增大而减小,说法错误,符合题意;故选:D【点睛】本题考查正比例函数的图像与性质,充分掌握正比例函数图象性质与系数之间的关系是解题关键10、A【解析】【分析】根据点A(,m),B(4,n)在一次函数y2
16、x3的图象上,可以求得m、n的值,然后即可比较出m、n的大小,本题得以解决【详解】解:点A(,m),B(4,n)在一次函数y2x3的图象上,m2(+1)321,n2435,215,mn,故选:A【点睛】本题考查了一次函数图象上点的坐标特征,解答本题的关键是求出m、n的值二、填空题1、(4,0)【解析】【分析】根据一次函数的性质分别求得点A、点C、点P的坐标,然后结合平行四边形的性质求解【详解】解:在y=x+2中,当y=0时,x+2=0,解得:x=-2,点A的坐标为(-2,0),在y=4x-4中,当x=0时,y=-4,C点坐标为(0,-4),联立方程组,解得:,P点坐标为(2,4),设Q点坐标为
17、(x,0),点Q在x轴上,以A、C、P、Q为顶点的四边形是平行四边形时,AQ和PC是对角线,解得:x=4,Q点坐标为(4,0),故答案为:(4,0)【点睛】本题考查了一次函数的性质,平行四边形的性质,理解一次函数的图象性质,掌握平行四边形对角线互相平分,利用数形结合思想解题是关键2、【解析】【分析】根据题意可得A、B两地的距离为40千米;从而得到甲的速度为10千米/时,乙的速度为 20千米/时;然后设x小时后,甲、乙两人相距4km,可得到当 或 时,甲、乙两人可以用无线对讲机保持联系,即可求解【详解】解:根据题意得:当x=0时,甲距离B地40千米,A、B两地的距离为40千米;由图可知,甲的速度
18、为404=10千米/时,乙的速度为402=20千米/时;设x小时后,甲、乙两人相距4km,若是相遇前,则10x+20x=40-4,解得:x=1.2;若是相遇后,则10x+20x=40+4,解得: ;若是到达B地前,则10x-20(x-2)=4,解得:x=3.6当 或 时,甲、乙两人可以用无线对讲机保持联系,即甲、乙两人总共有 可以用无线对讲机保持联系故答案为:【点睛】本题主要考查了函数图象,能够从图形获取准确信息是解题的关键3、yx-2【解析】【分析】根据平移的性质“左加右减,上加下减”,即可求出平移后的直线解析式【详解】解:直线yx3向下平移5个单位长度,得到新的直线的解析式是yx3-5=y
19、x-2故答案为:yx-2【点睛】本题考查的是一次函数图象的平移,熟练掌握“左加右减,上加下减”是解答本题的关键4、 一、二、三 一、三、四 一、二、四 二、三、四【解析】【分析】当k0时,直线必过一、三象限,k0时,直线必过一、二象限,b0时,直线过一、三象限,b0时,直线过一、二象限,则直线经过第一、二、三象限;故答案为:一、二、三(2)当k0时,直线过一、三象限,b0时,直线过三、四象限,则直线经过第一、三、四象限;故答案为:一、三、四(3)当k0时,直线过一、二象限,则直线经过第一、二、四象限;故答案为:一、二、四(4)当k0时,直线过二、四象限,b0时,直线过三、四象限,则直线经过第二
20、、三、四象限故答案为:二、三、四【点睛】本题考查了一次函数的图象与性质,b的几何意义,关键是数形结合5、【解析】【分析】直接利用一次函数的增减性即可得【详解】解:一次函数的一次项系数,随的增大而增大,点在一次函数的图象上,且,故答案为:【点睛】本题考查了一次函数的性质(增减性),熟练掌握一次函数的性质是解题关键三、解答题1、(1)点A、B的坐标分别为(6,0),(0,3),点C(2,2);COB的面积3;(2)P(4,1);(3)点Q的坐标为(0,127)或(0,125)或(0,65)【解析】【分析】(1)点A、B的坐标分别为(6,0)、(0,3),联立式yx,y12x+3得:点C(2,2);
21、COB的面积12OBxC,即可求解;(2)设点P(m,12m+3),SCOPSCOB,则BCPC,则(m2)2+(12m+32)222+125,即可求解;(3)分MQN90、QNM90、NMQ90三种情况,分别求解即可【详解】解:(1)直线l2的解析式为y12x3,与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为(6,0)、(0,3),联立式yx,y12x3并解得:x2,故点C(2,2);COB的面积12OBxC12323;(2)设点P(m,12m3),SCOPSCOB,则BCPC,则(m2)2(12m32)222125,解得:m4或0(舍去0),故点P(4,1);(3)设点M、N、Q的
22、坐标分别为(m,m)、(m,312m)、(0,n),当MQN90时,GNQGQN90,GQNHQM90,MQHGNQ,NGQQHM90,QMQN,NGQQHM(AAS),GNQH,GQHM,即:m312mn,nmm,解得:m67,n127;当QNM90时,则MNQN,即:312mmm,解得:m65,nyN31265=125;当NMQ90时,同理可得:n65;综上,点Q的坐标为(0,127)或(0,125)或(0,65)【点睛】本题主要考查一次函数与几何的综合,熟练掌握一次函数的性质及等腰三角形的性质是解题的关键2、(1)10,2,90,100;(2)当x为70s时,甲追上了乙;(3)当甲、乙之
23、间的距离不超过30米时,x的取值范围是55x85或92.5x100【解析】【分析】(1)根据图象x=10时,y=0知乙比甲早10s;由x=10时y=40,求得提速前速度;根据时间=路程速度可求提速后所用时间,即可得到m值,进而得出n的值;(2)先求出OA和BC解析式,甲追上乙即行走路程y相等,求图象上OA与BC相交时,列方程求出x的值;(3)根据题意列出等于30时的方程,一种是甲乙都行进时求出分界点,一种是甲到终点,乙差30求出范围即可【详解】解:(1)由题意可知,当x=10时,y=0,故甲比乙晚出发10秒;当x=10时,y=0;当x=30时,y=40;故甲提速前的速度是4030-10=2(m
24、/s);甲出发一段时间后速度提高为原来的3倍,甲提速后速度为6m/s,故提速后甲行走所用时间为:400-406=60(s),m=30+60=90(s)n=40036090=40090360=100(s);故答案为10;2;90;100;(2)设OA段对应的函数关系式为y=kx,A(90,360)在OA上,90k=360,解得k=4,y=4x设BC段对应的函数关系式为y=k1x+b,B(30,40)、C(90,400)在BC上,30k1+b4090k1+b400,解得k16b-140,y=6x-140,由乙追上了甲,得4x=6x-140,解得x=70答:当x为70秒时,甲追上了乙(3)由题意可得
25、,4x-40+6(x-30)=30,解得x55或x85,即55x85时,甲、乙之间的距离不超过30米; 当4x40030时,解得x92.5,即92.5x100时,甲、乙之间的距离不超过30米; 由上可得,当甲、乙之间的距离不超过30米时,x的取值范围是55x85或92.5x100【点睛】本题考查一次函数的图象与应用及利用待定系数法求函数解析式,解答时注意数形结合,属中档题3、(1)作图见解析,(2,1);(2)作图见解析,(2,0)【解析】【分析】(1)在坐标系中标出A、B、C三点,再顺次连接,即为ABC;根据轴对称的性质找到A、B、C三点关于x轴的对应点A1、B1、C1,再顺次连接,即为A1
26、B1C1,最后写出C1的坐标即可(2)根据轴对称的性质结合两点之间线段最短,即可直接连接A1B,即A1B与x轴的交点为点P,再直接写出点P坐标即可【详解】(1)ABC和A1B1C1如图所示,根据图可知C1(2,1)故答案为:(2,1)(2)AB长度不变,PAB的周长=PA+PB+AB,只要PA+PB最小即可如图,连结A1B交x轴于点P,两点之间线段最短,PA+PB=PA1+PBA1B,设A1B解析式为y=kx+b,过A1(-2,-4),B(4,2),代入得,-4=-2k+b2=4k+b 解得:k=1b=-2,A1B的解析式为y=x-2,当y=0时,即0=x-2,解得:x=2点P坐标为 (2,0
27、)当点P坐标为(2,0)时,APB周长最短【点睛】本题主要考查作图-轴对称变换,解题的关键是根据轴对称变换的定义作出变换后的对应点及掌握轴对称的性质4、(1)见解析;(2)见解析;(3)m45,n25【解析】【分析】(1)令x0,求得ym,令y0,求得xm,得到OAOBm,同理得到OCODn,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到ADBBCO,根据三角形外角的性质得到BADBCD,设BADDCB,则EBO2BAD2,求出ECBEBC,于是得到结论;(3)由(1)知OAOBm,OCODn,根据勾股定理即可得到结论【详解】1)证明:在yxm中,令x0,则ym,令y0,
28、则xm,A(m,0),B(0,m),OAOBm,在yxn中,令x0,则yn,令y0,则xn,C(n,0),D(0,n),OCODn,在AOD与BOC中,OA=OBAOD=BOC=90OD=OC,AODBOC(SAS);(2)证明:由(1)知,OAOB,OCOD,AOBCOD90,OABOBAODCCDO45,AODBOC,ADBBCO,ADOABOBAD45BAD,BCODCOBCD,BADBCD,设BADDCB,则EBO2BAD2,DBC45,ECBDCOBCD45,EBCEBOCBO24545,ECBEBC,BEEC;(3)解:由(1)知OAOBm,OCODn,AODBOE90,AO2OD
29、2AD2,OB2OE2BE2,AD10,BECE55,m2n2102,m2(55n)2(55)2,m45,n25【点睛】本题考查了一次函数的综合题,全等三角形的判定和性质,勾股定理,等腰三角形 的判定和性质,证得AODBOC是解题的关键5、(1)y=-3x+6;(2)见解析;(3)点N的坐标为(1+103,3+10)或(1-103,3-10)【解析】【分析】根据点C在y=3x上,可得m3,从而得到点C坐标为(1,3),再将将B(0,6)和点C(1,3)代入y=kx+b中,即可求解;(2)可先求出点A坐标为(2,0),再分别求SOCA和SOCB的大小,即可求解;(3)根据题意可得:点N的坐标为(
30、n,3n),点D的坐标为(n,-3n+6),从而得到ND=6n-6,再由NDAB,可得6n-6=210,解出即可【详解】解:(1)点C在y=3x上,m313,即点C坐标为(1,3),将B(0,6)和点C(1,3)代入y=kx+b中,得:k+b=3b=6,解得:k=-3b=6一次函数解析式为y=-3x+6; (2)由(1)知一次函数解析式为y=-3x+6,当y=0 时,x=2 ,点A坐标为(2,0),B(0,6)和点C(1,3),SOAC=1223=3,SOBC=1261=3,SOAC=SOBC; (3)由题意知,点N的坐标为(n,3n),点D的坐标为(n,-3n+6)ND=3n-(-3n+6)=6n-6,在RtAOB中,AB=OA2+OB2=22+62=210当NDAB时,有6n-6=210即6n-6=210,或6n-6=-210,解得:n=1+103或n=1-103,点N的坐标为(1+103,3+10)或(1-103,3-10)【点睛】本题主要考查了一次函数的图象和性质,交点问题,熟练掌握一次函数的图象和性质利用数形结合思想解答是解题的关键