《2022年最新浙教版初中数学七年级下册第四章因式分解综合训练练习题(浙教版).docx》由会员分享,可在线阅读,更多相关《2022年最新浙教版初中数学七年级下册第四章因式分解综合训练练习题(浙教版).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解综合训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式从左到右的变形中,属于因式分解的是( )A.6x9y33(2x3y)B.x21(x1)2C.(xy)2x22xyy2D.2x222(x1)(x1)2、下列各式中,由左向右的变形是分解因式的是( )A.B.C.D.3、下列各式中不能用公式法因式分解的是( )A.x24B.x24C.x2xD.x24
2、x44、如果多项式x25x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.55、下列各式从左到右的变形,属于因式分解的是( )A.B.C.D.6、下列各式从左边到右边的变形中,属于因式分解的是( )A.B.C.D.7、下列各式中,不能用完全平方公式分解因式的是()A.x2+2x+1B.16x2+1C.a2+4ab+4b2D.8、小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,现将3a(x21)3b(x21)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱新化C.我爱新
3、化D.新化数学9、下列分解因式的变形中,正确的是( )A.xy(xy)x(yx)x(yx)(y1)B.6(ab)22(ab)(2ab)(3ab1)C.3(nm)22(mn)(nm)(3n3m2)D.3a(ab)2(ab)(ab)2(2ab)10、下列式子的变形是因式分解的是( )A.B.C.D.11、下列分解因式正确的是()A.100p225q2(10p+5q)(10p5q)B.x2+x6(x3)(x+2)C.4m2+n2(2m+n)(2mn)D.12、已知,则 的值是( )A.B.C.45D.7213、下列因式分解正确的是( )A.x2-4=(x+4)(x-4)B.x2+2x+1=x(x+2
4、)+1C.3mx-6my=3m(x-6y)D.x2y-y3=y(x+y)(x-y)14、下列多项式中,能用平方差公式进行因式分解的是( )A.B.C.D.15、多项式可以因式分解成,则的值是( )A.-1B.1C.-5D.5二、填空题(10小题,每小题4分,共计40分)1、若a+b2,ab3,则代数式a3b+2a2b2+ab3的值为_2、将多项式因式分解_3、分解因式:12a2b9ac_4、如果(a+ )2a2+6ab+9b2,那么括号内可以填入的代数式是 _(只需填写一个)5、因式分解:_6、若关于的二次三项式可以用完全平方公式进行因式分解,则_7、因式分解:_8、分解因式:_9、因式分解:
5、_10、已知,则的值等于_三、解答题(3小题,每小题5分,共计15分)1、下面是多项式x3+y3因式分解的部分过程,解:原式x3+x2yx2y+y3(第一步)(x3+x2y)(x2yy3)(第二步)x2(x+y)y(x2y2)(第三步)x2(x+y)y(x+y)(xy)(第四步) 阅读以上解题过程,解答下列问题:(1)在上述的因式分解过程中,用到因式分解的方法有 (至少写出两种方法)(2)在横线继续完成对本题的因式分解(3)请你尝试用以上方法对多项式8x31进行因式分解2、把下面各式分解因式:(1)x24xy4y2;(2)3a2123、分解因式:(1)(2)-参考答案-一、单选题1、D【分析】
6、根据分解因式就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】解:A、6x+9y+3=3(2x+3y+1),故此选项错误;B、x2-1=(x+1)(x-1),故此选项错误;C、(x+y)2=x2+2xy+y2,是整式乘法运算,不是因式分解,故此选项错误;D、2x2-2=2(x-1)(x+1),属于因式分解,故此选项正确.故选:D.【点睛】本题考查的是因式分解的意义,正确掌握因式分解的定义是解题关键.2、B【分析】判断一个式子是否是因式分解的条件是等式的左边是一个多项式,等式的右边是几个整式的积,左、右两边相等,根据以上条件进行判断即可.【详解】解:A、,不是因式分解;故
7、A错误;B、,是因式分解;故B正确;C、,故C错误;D、,不是因式分解,故D错误;故选:B.【点睛】本题考查了因式分解的意义,把多项式转化成几个整式积的形式是解题关键.3、B【分析】根据完全平方公式:a22abb2(ab)2以及平方差公式分别判断得出答案.【详解】解:A、x24(x2)(x2),不合题意;B、x24,不能用公式法分解因式,符合题意;C、x2x(x)2,运用完全平方公式分解因式,不合题意;D、x24x4(x2)2,运用完全平方公式分解因式,不合题意;故选:B.【点睛】本题考查了公式法分解因式,解题的关键是熟练运用完全平方公式、平方差公式.4、C【分析】根据十字相乘法进行因式分解的
8、方法,对选项逐个判断即可.【详解】解:A、,不能用十字相乘法进行因式分解,不符合题意;B、,不能用十字相乘法进行因式分解,不符合题意;C、,能用十字相乘法进行因式分解,符合题意;D、,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.5、B【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、是把一个单项式转化成两个单项式乘积的形式,故A错误;B、把一个多项式转化成三个整式乘积的形式,故B正确;C、是把一个多项式转化成一个整式和一个分式乘积的形式,故C错误;D、是整式的乘法,故D错误
9、;故选:B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.6、B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此解答即可.【详解】解:A、是整式乘法,不是因式分解,故此选项不符合题意;B、符合因式分解的定义,是因式分解,故此选项符合题意;C、右边不是整式积的形式,不是因式分解,故此选项不符合题意;D、,分解错误,故此选项不符合题意;故选:B.【点睛】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.7、B【分析】根据完全平方公式的结构特征逐项进行判断即可.【详解】解:A.x2+2x
10、+1(x+1)2,因此选项A不符合题意;B.16x2+1在实数范围内不能进行因式分解,因此选项B符合题意;C.a2+4ab+4b2(a+2b)2,因此选项C不符合题意;D.x2x+(x)2,因此选项D不符合题意;故选:B.【点睛】此题考查了用完全平方公式进行因式分解,熟练掌握完全平方公式是解题的关键.8、C【分析】把所给的式子运用提公因式和平方差公式进行因式分解,查看对应的字即可得出答案.【详解】解:,x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,结果呈现的密码信息可能是:我爱新化,故选:C.【点睛】本题考查因式分解,解题的关键是熟练掌握提公因式法和套用平方差
11、公式.9、A【分析】按照提取公因式的方式分解因式,同时注意分解因式后的结果,一般而言每个因式中第一项的系数为正.【详解】解:A、xy(x-y)-x(y-x)=-x(y-x)(y+1),故本选项正确;B、6(a+b)2-2(a+b)=2(a+b)(3a+3b-1),故本选项错误;C、3(n-m)2+2(m-n)=(n-m)(3n-3m-2),故本选项错误;D、3a(a+b)2-(a+b)=(a+b)(3a2+3ab-1),故本选项错误.故选:A.【点睛】本题考查提公因式法分解因式.准确确定公因式是求解的关键.10、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也
12、叫做分解因式,由此结合选项即可作出判断.【详解】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、是因式分解,故本选项正确;故正确的选项为:D【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,属于基础题.11、C【分析】根据因式分解的各种方法逐个判断即可.【详解】解:A.,故本选项不符合题意;B.,故本选项不符合题意;C.故本选项符合题意;D.,所以,故本选项不符合题意;故选:C.【点睛】此题考查了因式分解的方法
13、,熟练掌握因式分解的有关方法是解题的关键.12、D【分析】直接利用完全平方公式:a22ab+b2(ab)2,得出a,b的值,进而得出答案.【详解】解:x22ax+b(x3)2x26x+9,2a6,b9,解得:a3,故b2a2923272.故选:D.【点睛】此题主要考查了公式法分解因式,正确记忆完全平方公式是解题关键.13、D【分析】根据提公因式法、公式法逐项进行因式分解,再进行判断即可.【详解】解:A.x2-4=(x+2)(x-2),因此选项A不符合题意;B.x2+2x+1=(x+1)2,因此选项B不符合题意;C.3mx-6my=3m(x-2y),因此选项C不符合题意;D.x2y-y3=y(x
14、2-y2)=y(x+y)(x-y),因此选项D符合题意;故选:D.【点睛】本题考查提公因式法、公式法分解因式,掌握a2-b2=(a+b)(a-b),a22ab+b2=(ab)2是正确应用的前提.14、D【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、a22abb2是三项,不能用平方差公式进行因式分解.B、a2b2两平方项符号相同,不能用平方差公式进行因式分解;C、a2b2两平方项符号相同,不能用平方差公式进行因式分解;D、a2b2符合平方差公式的特点,能用平方差公式进行因式分解;故选:D.【点睛】本题考查平方差公式进行因式分解,熟记
15、平方差公式的结构特点是求解的关键.平方差公式:a2b2(ab)(ab).15、D【分析】先提公因式,然后将原多项式因式分解,可求出和 的值,即可计算求得答案.【详解】解:,.故选:.【点睛】本题考查了提公因式法分解因式,准确找到公因式是解题的关键.二、填空题1、-12【分析】根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.【详解】解:a+b=2,ab=3,a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=34,=12.故答案为:12.【点睛】本题考查了因式分解的应用以及完全平方式
16、的转化,注意因式分解各种方法的灵活运用是解题的关键.2、【分析】先提取公因式 再利用平方差公式分解因式即可得到答案.【详解】解:故答案为:【点睛】本题考查的是综合提公因式与公式法分解因式,熟练“一提二套三交叉四分组”的分解因式的方法与顺序是解题的关键.3、【分析】根据提公因式法分解因式求解即可.【详解】解:12a2b9ac.故答案为:.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.4、3b【分析】先根据展开式三项进行公式化变形,利用因式分解公式得出因式分解结果,再反过来即可得解.【详解】解:a2+
17、6ab+9b2= a2+2a3b+(3b)2=(a+3b)2,(a+3b )2a2+6ab+9b2,故答案为3b.【点睛】本题考查多项式的乘法公式,可反过来用因式分解公式来求解是解题关键.5、【分析】先把原式化为 再利用平方差公式分解因式,再把其中一个因式按照平方差公式继续分解,从而可得答案.【详解】解:原式,故答案为:.【点睛】本题考查的是利用平方差公式分解因式,注意分解因式一定要分解到每个因式都不能再分解为止.6、-3或5【分析】直接利用完全平方公式进而分解因式得出答案.【详解】解:x2-2(m-1)x+16能用完全平方公式进行因式分解,-2(m-1)=8,解得:m=-3或5.故答案为:-
18、3或5.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.7、【分析】先提公因式,再用平方差公式分解即可.【详解】故答案为:【点睛】本题综合考查了提公因式法和公式法分解因式,一般地,因式分解的步骤是:先考虑提公因式;其次考虑用公式法.另外,因式分解要分解到再也不能分解为止.8、【分析】先提出公因式 ,再利用平方差公式进行因式分解即可.【详解】解:,故答案为:.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式因式分解的方法提公因式法、公式法、十字相乘法、分组分解法,还要注意分解彻底,是解题的关键.9、【分析】先提公因式4,再利用平方差公式分解.【详解】解:=故答案为:.
19、【点睛】本题考查提公因式法和公式法进行因式分解,掌握提平方差公式是解题关键.10、-36【分析】将所求代数式先提取公因式xy,再利用完全平方公式分解因式,得出,然后整体代入x+y,xy的值计算即可.【详解】解:=,=-36,故答案为:-36.【点睛】本题考查了因式分解方法的应用,代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.三、解答题1、(1)提公因式法,公式法,分组分解法;(2);(3)【分析】(1)根据题意可得因式分解的方法为提公因式法,公式法,分组分解法;(2)根据第四步的结果提公因式法因式分解即可;(3)根据题中的多项式x3+y3因式分解方法求解即可.【详解】(1)因式
20、分解的方法为提公因式法,公式法,分组分解法;故答案为:提公因式法,公式法(2)原式x2(x+y)y(x+y)(xy)(第四步)故答案为:(3)【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.2、(1)(x2y)2;(2)3(a+2)(a2).【分析】(1)直接用公式法分解即可;(2)先提公因式,再利用平方差公式分解.【详解】解:(1)x24xy4y2(x2y)2;(2)3a2123(a24)3(a+2)(a2).【点睛】本题考查利用公式法和提公因式法分解因式,一般先提公因式,再观察能否用公式法分解因式,公式法是利用完全平方公式和平方差公式.3、(1);(2)【分析】(1)直接利用完全平方和公式进行因式分解;(2)提取公因式后,再利用平方差公式进行因式分解.【详解】解:(1)(2).【点睛】本题考查了因式分解,解题的关键是根据具体内容选择合适的公式进行因式分解.