真题汇总:2022年北京市丰台区中考数学第三次模拟试题(含答案解析).docx

上传人:可****阿 文档编号:30680037 上传时间:2022-08-06 格式:DOCX 页数:26 大小:785.80KB
返回 下载 相关 举报
真题汇总:2022年北京市丰台区中考数学第三次模拟试题(含答案解析).docx_第1页
第1页 / 共26页
真题汇总:2022年北京市丰台区中考数学第三次模拟试题(含答案解析).docx_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《真题汇总:2022年北京市丰台区中考数学第三次模拟试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《真题汇总:2022年北京市丰台区中考数学第三次模拟试题(含答案解析).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年北京市丰台区中考数学第三次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )

2、ABCD2、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B那么它爬行的最短路程为()A10米B12米C15米D20米3、下图中能体现1一定大于2的是()ABCD4、九章算术中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x元,则可列方程为( )ABCD5、甲、乙两地相距s千来,汽车从甲地匀速行驶到乙地,行驶的时间t(小时)关于行驶速度v(千米时)的函数图像是( )

3、ABCD6、下列方程中,属于二元一次方程的是()Axy31B4x2y3Cx+4Dx24y1 线 封 密 内 号学级年名姓 线 封 密 外 7、下列说法正确的是( )A不相交的两条直线叫做平行线B过一点有且仅有一条直线与已知直线垂直C平角是一条直线D过同一平面内三点中任意两点,只能画出3条直线8、下列利用等式的性质,错误的是( )A由,得到B由,得到C由,得到D由,得到9、为庆祝中国共产党成立100周年,某学校开展学习“四史”(党史、新中国史、改革开放史、社会主义发展史)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到新中国史这本书的概率为()ABCD110、今年,网络购

4、物已经成为人们生活中越来越常用的购物方式元旦期间,某快递分派站有包裹若干件需快递员派送,若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件,设该分派站有x名快递,则可列方程为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知ABC与ADE均是等腰直角三角形,BACADE90,ABAC1,ADDE,点D在直线BC上,EA的延长线交直线BC于点F,则FB的长是 _2、如图,点、点是线段上的两个点,且,如果AB=5cm,CD=1cm,那么的长等于_cm3、方程(2x1)225的解是 _;4、如图,ABCDEF,如果AC2,CE3,BD1.5,

5、那么BF的长是_5、如果有理数满足,在数轴上点所表示的数是,点所表示的数是;那么在数轴上_(填点和点中哪个点在哪个点)的右边三、解答题(5小题,每小题10分,共计50分)1、如图ABC中,B60,BAC与ACB的角平分线AD、CE交于O求证:ACAE+DC2、已知顶点为D的抛物线交y轴于点,且与直线l交于不同的两点A、B(A、B不与点D重合)(1)求抛物线的解析式;(2)若, 线 封 密 内 号学级年名姓 线 封 密 外 试说明:直线l必过定点;过点D作,垂足为点F,求点C到点F的最短距离3、解下列方程:(1)(2)4、如图,在长方形中,延长到点,使,连接动点从点出发,沿着以每秒1个单位的速度

6、向终点运动,点运动的时间为秒(1)的长为 ;(2)连接,求当为何值时,;(3)连接,求当为何值时,是直角三角形;(4)直接写出当为何值时,是等腰三角形5、计算:-参考答案-一、单选题1、C【分析】由数轴可得: 再逐一判断的符号即可.【详解】解:由数轴可得: 故A,B,D不符合题意,C符合题意;故选C【点睛】本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法,减法,乘法的结果的符号确定,掌握以上基础知识是解本题的关键.2、C【分析】将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可【详解】解:如图,(1)AB;(2)AB15,由于15,则蚂蚁爬行的

7、最短路程为15米故选:C 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了平面展开-最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算3、C【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、1和2是对顶角,12故此选项不符合题意;B、如图, 若两线平行,则32,则 若两线不平行,则大小关系不确定,所以1不一定大于2故此选项不符合题意;C、1是三角形的外角,所以12,故此选项符合题意;D、根据同角的余角相等,可得12,故此选项不符合题意故选:C【点睛】本题考

8、查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.4、D【分析】设这个物品的价格是x元,根据人数不变列方程即可【详解】解:设这个物品的价格是x元,由题意得,故选D【点睛】本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程5、B【分析】直接根据题意得出函数关系式,进而得出函数图象【详解】解:由题意可得:t=,是反比例函数,故只有选项B符合题意故选:B【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键 线 封 密 内 号学级年名姓 线 封 密 外

9、6、B【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程【详解】解:A、xy-3=1,是二元二次方程,故本选项不合题意;B、4x-2y=3,属于二元一次方程,故本选项符合题意;C、x+4,是分式方程,故本选项不合题意;D、x2-4y=1,是二元二次方程,故本选项不合题意;故选:B【点睛】此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:首先是整式方程方程中共含有两个未知数所有未知项的次数都是一次不符合上述任何一个条件的都不叫二元一次方程7、B【分析】根据平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质依次判断【详解】解:同一平面内,

10、不相交的两条直线叫做平行线,故选项A错误;过一点有且仅有一条直线与已知直线垂直,故选项B正确;平角是角的两边在同一直线上的角,故选项C错误;过同一平面内三点中任意两点,能画出1条或3条直线故选项D错误;故选:B【点睛】此题考查语句的正确性,正确掌握平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质是解题的关键8、B【分析】根据等式的性质逐项分析即可【详解】A.由,两边都加1,得到,正确;B.由,当c0时,两边除以c,得到,故不正确;C.由,两边乘以c,得到,正确;D.由,两边乘以2,得到,正确;故选B【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键等式的基本性质1是等

11、式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式9、A【分析】直接根据概率公式求解即可【详解】解:由题意得,他恰好选到新中国史这本书的概率为,故选:A【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比 线 封 密 内 号学级年名姓 线 封 密 外 10、B【分析】设该分派站有x个快递员,根据“若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件”,即可得出关于x的一元一次方程,求出答案【详解】解:设该分派站有x名快递员,则可列方程为:7x+6=8x-1故选:B【点睛

12、】本题考查了由实际问题抽象出一元一次方程,找准等量关系是解题的关键二、填空题1、【分析】过点A作AHBC于点H,根据等腰直角三角形的性质可得DH=,CD=,再证明ABFDCA,进而对应边成比例即可求出FB的长【详解】解:如图,过点A作AHBC于点H,BAC=90,AB=AC=1,BC=,AHBC,BH=CH=,AH=,AD=DE=,DH=,CD=DH-CH=,ABC=ACB=45,ABF=ACD=135,DAE=45,DAF=135,BAC=90,BAF+DAC=45,BAF+F=45,F=DAC,ABFDCA,BF=, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:【点睛】本题考查

13、了相似三角形的判定与性质,等腰直角三角形,解决本题的关键是得到ABFDAC2、2【分析】,可知,代值求解即可【详解】解:,故答案为:2【点睛】本题考查了线段的和与差解题的关键在于正确的表示各线段之间的数量关系3、x1=3,x2=-2【分析】通过直接开平方求得2x-1=5,然后通过移项、合并同类项,化未知数系数为1解方程【详解】解:由原方程开平方,得2x-1=5,则x=,解得,x1=3,x2=-2故答案是:x1=3,x2=-2【点睛】本题考查了解一元二次方程-直接开平方法(1)用直接开方法求一元二次方程的解的类型有:x2=a(a0);ax2=b(a,b同号且a0);(x+a)2=b(b0);a(

14、x+b)2=c(a,c同号且a0)法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”(2)运用整体思想,会把被开方数看成整体(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点4、【分析】根据平行线分线段成比例定理解答即可【详解】解:ABCDEF,AC2,CE3,BD1.5,即,解得:BF,故答案为:【点睛】本题主要考查了平行线分线段成比例,熟知平行线分线段成比例定理是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 5、点在点【分析】利用a610可知a0,a20210,根据原点左边的数为负数,原点右边的数为正数可得结论【详解】解:,点在点的右边

15、故答案为:点在点【点睛】本题主要考查了有理数的乘方,数轴利用负数的偶次方是正数,负数的奇数次方是负数的法则是解题的关键三、解答题1、见解析【分析】在AC上截取CF=CD,由角平分线的性质和三角形内角和定理可求AOC=120,DOC=AOE=60,由“SAS”可证CDOCFO,可得COF=COD=60,由“ASA”可证AOFAOE,可得AE=AF,即可得结论【详解】解:证明:如图,在AC上截取CF=CD,B=60,BAC+BCA=120,BAC、BCA的角平分线AD、CE相交于O,BAD=OAC=BAC,DCE=OCA=BCA,OAC+OCA=(BAC+BCA)=60,AOC=120,DOC=A

16、OE=60,CD=CF,OCA=DCO,CO=CO,CDOCFO(SAS),COF=COD=60,AOF=EOA=60,且AO=AO,BAD=DAC,AOFAOE(ASA),AE=AF,AC=AF+FC=AE+CD【点睛】本题考查了全等三角形的判定与性质,添加恰当辅助线构造全等三角形是本题的关键2、(1) 线 封 密 内 号学级年名姓 线 封 密 外 (2)见解析;【分析】(1)将点代入即可求得的值,继而求得二次函数的解析式;(2)设直线的解析为,设,则, 联立直线解析式和抛物线解析式,根据根与系数的关系求得进而求得,证明,根据相似比求得,进而根据两个表达式相等从而得出与的关系式,代入直线解析

17、式,根据直线过定点与无关,进而求得定点坐标;设,由可知经过点,则, ,进而根据90圆周角所对的弦是直径,继而判断的轨迹是以的中点为圆心,为直径的圆,根据点与圆的位置即可求得最小值(1)解:抛物线交y轴于点,解得抛物线为(2)如图,过点分别作轴的垂线,垂足分别为,设直线的解析为,设,则, 则的坐标即为的解即,轴,轴 线 封 密 内 号学级年名姓 线 封 密 外 或或当时,则过定点 A、B不与点D重合则此情况舍去;当时,即过定点必过定点如图,设,,在以的中点为圆心,为直径的圆上运动的最小值为【点睛】本题考查了待定系数法求二次函数解析式,相似三角形的性质与判定,一元二次方程根与系数的关系,点与圆的位

18、置关系求最值,勾股定理,二次函数与直线交点问题,掌握以上知识是解题的关键3、(1);(2)【分析】(1)去括号,移项合并,系数化1即可;(2)首先分母化整数分母,去分母,去括号,移项,合并,系数化1即可(1)解:,去括号得:, 线 封 密 内 号学级年名姓 线 封 密 外 移项合并得:,系数化1得:;(2)解:,小数分母化整数分母得:,去分母得:,去括号得:,移项得:,合并得:,系数化1得:【点睛】本题考查一元一次方程的解法,掌握解一元一次方程的方法与步骤是解题关键4、(1)5;(2)秒时,;(3)当秒或秒时,是直角三角形;(4)当秒或秒或秒时,为等腰三角形【分析】(1)根据长方形的性质及勾股

19、定理直接求解即可;(2)根据全等三角形的性质可得:,即可求出时间t;(3)分两种情况讨论:当时,在两个直角三角形中运用两次勾股定理,然后建立等量关系求解即可;当时,此时点P与点C重合,得出,即可计算t的值;(4)分三种情况讨论:当时,当时,当时,分别结合图形,利用各边之间的关系及勾股定理求解即可得【详解】解:(1)四边形ABCD为长方形,在中,故答案为:5;(2)如图所示:当点P到如图所示位置时,仅有如图所示一种情况,此时,秒时,;(3)当时,如图所示: 线 封 密 内 号学级年名姓 线 封 密 外 在中,在中,解得:;当时,此时点P与点C重合,;综上可得:当秒或秒时,是直角三角形;(4)若为等腰三角形,分三种情况讨论:当时,如图所示:,;当时,如图所示:,;当时,如图所示: 线 封 密 内 号学级年名姓 线 封 密 外 ,在中,即,解得:,;综上可得:当秒或秒或秒时,为等腰三角形【点睛】题目主要考查勾股定理解三角形,等腰三角形的性质,全等三角形的性质等,理解题意,分类讨论作出相应图形是解题关键5、【分析】直接利用二次根式的性质化简进而得出答案【详解】解:【点睛】此题主要考查了二次根式的乘除运算, 正确化简二次根式是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁