2021-2022年收藏的精品资料专题13 操作性问题第01期中考数学试题分项版解析汇编解析版.doc

上传人:可****阿 文档编号:30674610 上传时间:2022-08-06 格式:DOC 页数:33 大小:1.72MB
返回 下载 相关 举报
2021-2022年收藏的精品资料专题13 操作性问题第01期中考数学试题分项版解析汇编解析版.doc_第1页
第1页 / 共33页
2021-2022年收藏的精品资料专题13 操作性问题第01期中考数学试题分项版解析汇编解析版.doc_第2页
第2页 / 共33页
点击查看更多>>
资源描述

《2021-2022年收藏的精品资料专题13 操作性问题第01期中考数学试题分项版解析汇编解析版.doc》由会员分享,可在线阅读,更多相关《2021-2022年收藏的精品资料专题13 操作性问题第01期中考数学试题分项版解析汇编解析版.doc(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、专题13 操作性问题一、选择题1.(2017浙江衢州第7题)下列四种基本尺规作图分别表示:作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()ABCD【答案】C.考点:基本作图.2. (2017湖北武汉第10题)如图,在中,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A4 B5 C 6 D7【答案】C【解析】试题解析:以B为圆心,BC长为半径画弧,交AB于点D,BCD就是等腰三角形;以A为圆心,AC长为半径画弧,交AB于点E,ACE就是等腰三角形;以C为圆心,BC长

2、为半径画弧,交AC于点F,BCF就是等腰三角形;作AC的垂直平分线交AB于点H,ACH就是等腰三角形;作AB的垂直平分线交AC于G,则AGB是等腰三角形;作BC的垂直平分线交AB于I,则BCI是等腰三角形故选C.考点:画等腰三角形.3.(2017甘肃兰州第13题)如图,小明为了测量一凉亭的高度(顶端到水平地面的距离),在凉亭的旁边放置一个与凉亭台阶等高的台阶(米,三点共线),把一面镜子水平放置在平台上的点处,测得米,然后沿直线后退到点处,这时恰好在镜子里看到凉亭的顶端,测得米,小明身高米,则凉亭的高度约为( )A.米B.米C.米D.10米【答案】A.【解析】试题解析:由题意AGC=FGE,AC

3、G=FEG=90,ACGFEG, AC=8,AB=AC+BC=8+0.5=8.5米故选A点:相似三角形的应用4.(2017浙江嘉兴第9题)一张矩形纸片,已知,小明按所给图步骤折叠纸片,则线段长为( )ABCD 【答案】A考点:矩形的性质.二、填空题1. (2017浙江衢州第14题)如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是 【答案】a+6考点:图形的拼接.2. (2017浙江衢州第16题)如图,正ABO的边长为2,O为坐标原点,A在轴上,B在第二象限。ABO沿轴正方向作无滑动的翻滚,经第

4、一次翻滚后得A1B1O,则翻滚3次后点B的对应点的坐标是_;翻滚2017次后AB中点M经过的路径长为_【答案】(5,);.【解析】试题解析:如图,作B3Ex轴于E,易知OE=5,B3E=,B3(5,),观察图象可知三次一个循环,一个循环点M的运动路径为:,20173=6721,翻滚2017次后AB中点M经过的路径长为:672(考点:点的坐标.3.(2017贵州黔东南州第16题)把多块大小不同的30直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),ABO=30;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块

5、三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;按此规律继续下去,则点B2017的坐标为 【答案】(0,)【解析】试题解析:由题意可得,OB=OAtan60=1=,OB1=OBtan60=,OB2=OB1tan60=()3,20174=5061,点B2017的坐标为(0,),考点:点的坐标4.(2017山东烟台第15题)运行程序如图所示,从“输入实数”到“结果是否”为一次程序操作,若输入后程序操作仅进行了一次就停止,则的取值范围是 .【答案】x8【解析】试题解析:依题意得:3x618,解得x8考点

6、:一元一次不等式的应用5. (2017山东烟台第18题)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形.已知,取的中点,过点作交弧于点,点是弧上一点,若将扇形沿翻折,点恰好与点重合.用剪刀沿着线段依次剪下,则剪下的纸片(形状同阴影图形)面积之和为 .【答案】36108【解析】试题解析:如图,CDOA,DCO=AOB=90,OA=OD=OB=6,OC=OA=OD,ODC=BOD=30,作DEOB于点E,则DE=OD=3,S弓形BD=S扇形BODSBOD=63=39,则剪下的纸片面积之和为12(39)=36108考点:扇形面积的计算6.(2017江苏徐州第18题)如图,已知,以为直角

7、边作等腰直角三角形.再以为直角边作等腰直角三角形,如此下去,则线段的长度为 学-科网【答案】【解析】试题解析:OBA1为等腰直角三角形,OB=1,AA1=OA=1,OA1=OB=;OA1A2为等腰直角三角形,A1A2=OA1=,OA2=OA1=2;OA2A3为等腰直角三角形,A2A3=OA2=2,OA3=OA2=2;OA3A4为等腰直角三角形,A3A4=OA3=2,OA4=OA3=4OA4A5为等腰直角三角形,A4A5=OA4=4,OA5=OA4=4,OA5A6为等腰直角三角形,A5A6=OA5=4,OA6=OA5=8OAn的长度为考点:等腰直角三角形7.(2017浙江嘉兴第15题)如图,把个

8、边长为1的正方形拼接成一排,求得,计算 ,按此规律,写出 (用含的代数式表示)【答案】,.【解析】试题解析:作CHBA4于H,由勾股定理得,BA4=,A4C=,BA4C的面积=4-2-=,CH=,解得,CH=,则A4H=,tanBA4C=,1=12-1+1,3=22-2+1,7=32-3+1,tanBAnC=.考点:1.解直角三角形;2.勾股定理;3.正方形的性质三、解答题1.(2017浙江衢州第23题)问题背景如图1,在正方形ABCD的内部,作DAE=ABF=BCG=CDH,根据三角形全等的条件,易得DAEABFBCGCDH,从而得到四边形EFGH是正方形。类比研究来源:学。科。网如图2,在

9、正ABC的内部,作BAD=CBE=ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)。(1)ABD,BCE,CAF是否全等?如果是,请选择其中一对进行证明;(2)DEF是否为正三角形?请说明理由;(3)进一步探究发现,ABD的三边存在一定的等量关系,设,请探索,满足的等量关系。【答案】(1)全等;证明见解析;(2)是,理由见解析;(3)c2=a2+ab+b2【解析】试题分析:(1)由正三角形的性质得CAB=ABC=BCA=60,AB=BC,证出ABD=BCE,由ASA证明ABDBCE即可;、(2)由全等三角形的性质得出ADB=BEC=CFA,证出FDE=DEF=EFD,即

10、可得出结论;(3)作AGBD于G,由正三角形的性质得出ADG60,在RtADG中,DG=b,AG=b, 在RtABG中,由勾股定理即可得出结论.试题解析: (1)ABDBCECAF;理由如下:ABC是正三角形,CAB=ABC=BCA=60,AB=BC,ABD=ABC2,BCE=ACB3,2=3,ABD=BCE,在ABD和BCE中,ABDBCE(ASA);(2)DEF是正三角形;理由如下:ABDBCECAF,ADB=BEC=CFA,FDE=DEF=EFD,DEF是正三角形;(3)作AGBD于G,如图所示:DEF是正三角形,ADG=60,在RtADG中,DG=b,AG=b,在RtABG中,c2=(

11、a+b)2+(b)2,c2=a2+ab+b2 考点:1.全等三角形的判定与性质;2.勾股定理.2.(2017浙江宁波第20题)在的方格纸中,的三个顶点都在格点上. (1)在图1中画出与成轴对称且与有公共边的格点三角形(画出一个即可);(2)将图2中的绕着点按顺时针方向旋转,画出经旋转后的三角形. 【答案】(1)作图见解析;(2)作图见解析.【解析】试题分析:根据题意画出图形即可.试题解析:(1)如图所示:或(2)如图所示:考点:1.轴对称图形;2.旋转.3.(2017甘肃庆阳第21题)如图,已知ABC,请用圆规和直尺作出ABC的一条中位线EF(不写作法,保留作图痕迹)【答案】作图见解析考点:作

12、图复杂作图;三角形中位线定理4.(2017广西贵港第20题)尺规作图(不写作法,保留作图痕迹):已知线段和,点 在上(如图所示).(1)在边上作点,使 ;(2)作的平分线;(3)过点作的垂线.【答案】作图见解析.试题解析:(1)点P为所求作;(2)OC为所求作;(3)MD为所求作;考点:作图复杂作图5.(2017江苏无锡第24题)如图,已知等边ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上【答案】(1)作图见解析;(2)作图见解析.试题解

13、析:(1)如图所示:点O即为所求(2)如图所示:六边形DEFGHI即为所求正六边形考点:1.作图复杂作图;2.等边三角形的性质;3.三角形的外接圆与外心6. (2017江苏无锡第25题)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PCx轴于点C,点C绕点P逆时针旋转60得到点Q”我们将此由点P得到点Q的操作称为点的T变换(1)点P(a,b)经过T变换后得到的点Q的坐标为 ;若点M经过T变换后得到点N(6,),则点M的坐标为 (2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B求经过点O,点B的直线的函数表达式;如图2,直线AB交y轴于点D,求OAB的面积

14、与OAD的面积之比【答案】(1)Q(a+b,b);M(9,2);(2)y=x;【解析】试题解析:(1)如图1,连接CQ,过Q作QDPC于点D,由旋转的性质可得PC=PQ,且CPQ=60,PCQ为等边三角形,P(a,b),OC=a,PC=b,CD=PC=b,DQ=PQ=b,Q(a+b,b);设M(x,y),则N点坐标为(x+y,y),N(6,),解得,M(9,2);(2)A是函数y=x图象上异于原点O的任意一点,可取A(2,),2+=,=,B(,),设直线OB的函数表达式为y=kx,则k=,解得k=,直线OB的函数表达式为y=x;设直线AB解析式为y=kx+b,把A、B坐标代入可得,解得,直线A

15、B解析式为y=x+,D(0,),且A(2,),B(,),AB=,AD=,考点:一次函数综合题7.(2017江苏盐城第24题)如图,ABC是一块直角三角板,且C=90,A=30,现将圆心为点O的圆形纸片放置在三角板内部(1)如图,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长【答案】(1)作图见解析;(2)15+【解析】试题分析:(1)作ACB的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O,作射线CO即可;(2)添加

16、如图所示辅助线,圆心O的运动路径长为COO1O2,先求出ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出OO1O2=60=ABC、O1OO2=90,从而知OO1O2CBA,利用相似三角形的性质即可得出答案试题解析:(1)如图所示,射线OC即为所求;(2)如图,圆心O的运动路径长为COO1O2,过点O1作O1DBC、O1FAC、O1GAB,垂足分别为点D、F、G,过点O作OEBC,垂足为点E,连接O2B,过点O2作O2HAB,O2IAC,垂足分别为点H、I,在RtABC中,ACB=90、A=30,AC=,AB=2BC=1

17、8,ABC=60,CABC=9+9+18=27+9,O1DBC、O1GAB,D、G为切点,BD=BG,在RtO1BD和RtO1BG中,O1BDO1BG(HL),O1BG=O1BD=30,在RtO1BD中,O1DB=90,O1BD=30,BD=,OO1=9-2-2=7-2,O1D=OE=2,O1DBC,OEBC,O1DOE,且O1D=OE,四边形OEDO1为平行四边形,OED=90,四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,四边形OECF为正方形,O1GH=CDO1=90,ABC=60,GO1D=120,又FO1D=O2O1G=90,O

18、O1O2=360-90-90=60=ABC,同理,O1OO2=90,OO1O2CBA,即,COO1O2=15+,即圆心O运动的路径长为15+考点:切线的性质;作图复杂作图8.(2017江苏盐城第26题)【探索发现】如图,是一张直角三角形纸片,B=60,小明想从中剪出一个以B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为 【拓展应用】如图,在ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大

19、值为 (用含a,h的代数式表示)【灵活应用】如图,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(B为所剪出矩形的内角),求该矩形的面积【实际应用】如图,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积【答案】【探索发现】;【拓展应用】;【灵活应用】720; 【实际应用】1944cm2【解析】试题分析:【探索发现】:由中位线知EF=BC、ED=AB、由可得;【拓展应用】:由APN

20、ABC知,可得PN=a-PQ,设PQ=x,由S矩形PQMN=PQPN-(x-)2+,据此可得;【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH20、CD=DH=16,分别证AEFHED、CDGHDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;【实际应用】:延长BA、CD交于点E,过点E作EHBC于点H,由tanB=tanC知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得试题解析:【探索发现】

21、EF、ED为ABC中位线,EDAB,EFBC,EF=BC,ED=AB,又B=90,四边形FEDB是矩形,则【拓展应用】PNBC,APNABC,即,PN=a-PQ,设PQ=x,则S矩形PQMN=PQPN=x(a-x)=-x2+ax=-(x-)2+,当PQ=时,S矩形PQMN最大值为,【灵活应用】如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,AB=32,BC=40,AE=20,CD=16,EH=20、DH=16,AE=EH、CD=DH,在AEF和HED中,AEFHED(ASA),AF=DH=16,同理CDG

22、HDE,CG=HE=20,BI=24,BI=2432,中位线IK的两端点在线段AB和DE上,过点K作KLBC于点L,由【探索发现】知矩形的最大面积为BGBF=(40+20)(32+16)=720,答:该矩形的面积为720;【实际应用】如图2,延长BA、CD交于点E,过点E作EHBC于点H,tanB=tanC=,B=C,EB=EC,BC=108cm,且EHBC,BH=CH=BC=54cm,tanB=,EH=BH=54=72cm,在RtBHE中,BE=90cm,AB=50cm,AE=40cm,BE的中点Q在线段AB上,CD=60cm,ED=30cm,CE的中点P在线段CD上,中位线PQ的两端点在线

23、段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BCEH=1944cm2,答:该矩形的面积为1944cm2考点:四边形综合题9.(2017甘肃兰州第22题)在数学课上,同学们已经探究过“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线和外一点求作:直线的垂线,使它经过点.做法:如图:(1)在直线上任取两点、;(2)分别以点、为圆心,长为半径画弧,两弧相交于点;(3)作直线.参考以上材料作图的方法,解决以下问题:(1)以上材料作图的依据是.(3)已知:直线和外一点,求作:,使它与直线相切。(尺规作图,不写做法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【答案】(1)线段

24、垂直平分线上的点到线段两端点的距离相等;(2)作图见解析.【解析】试题分析:(1)根据线段垂直平分线的性质,可得答案;(2)根据线段垂直平分线的性质,切线的性质,可得答案试题解析:(1)以上材料作图的依据是:线段垂直平分线上的点到线段两端点的距离相等,(2)如图考点:作图复杂作图;切线的判定10.(2017山东烟台第23题)【操作发现】(1)如图1,为等边三角形,先将三角板中的角与重合,再将三角板绕点按顺时针方向旋转(旋转角大于且小于).旋转后三角板的一直角边与交于点.在三角板斜边上取一点,使,线段上取点,使,连接,.求的度数;与相等吗?请说明理由;【类比探究】(2)如图2,为等腰直角三角形,

25、先将三角板的角与重合,再将三角板绕点按顺时针方向旋转(旋转角大于且小于).旋转后三角板的一直角边与交于点.在三角板另一直角边上取一点,使,线段上取点,使,连接,.请直接写出探究结果:学科网的度数;线段之间的数量关系.【答案】(1)120;DE=EF;理由见解析;(2)90;AE2+DB2=DE2理由见解析.【解析】试题解析:(1)ABC是等边三角形,AC=BC,BAC=B=60,DCF=60,ACF=BCD,在ACF和BCD中,ACFBCD(SAS),CAF=B=60,EAF=BAC+CAF=120;DE=EF;理由如下:DCF=60,DCE=30,FCE=6030=30,DCE=FCE,在D

26、CE和FCE中,DCEFCE(SAS),DE=EF;(2)ABC是等腰直角三角形,ACB=90,AC=BC,BAC=B=45,DCF=90,ACF=BCD,在ACF和BCD中,ACFBCD(SAS),CAF=B=45,AF=DB,EAF=BAC+CAF=90;AE2+DB2=DE2,理由如下:DCF=90,DCE=45,FCE=9045=45,DCE=FCE,在DCE和FCE中,DCEFCE(SAS),DE=EF,在RtAEF中,AE2+AF2=EF2,又AF=DB,AE2+DB2=DE2考点:几何变换综合题11.(2017四川自贡第18题)如图,13个边长为1的小正方形,排列形式如图,把它们

27、分割,使分割后能拼成一个大正方形请在如图所示的网格中(网格的边长为1)中,用直尺作出这个大正方形【答案】作图见解析.【解析】试题解析:如图所示:所画正方形即为所求考点:作图应用与设计.12. (2017四川自贡第22题)两个城镇A,B与一条公路CD,一条河流CE的位置如图所示,某人要修建一避暑山庄,要求该山庄到A,B的距离必须相等,到CD和CE的距离也必须相等,且在DCE的内部,请画出该山庄的位置P(不要求写作法,保留作图痕迹)【答案】作图见解析【解析】试题分析:根据角平分线的性质可知:到CD和CE的距离相等的点在DCE的角平分线上,所以第一步作:ECD的平分线CF;根据中垂线的性质可得:到A

28、、B的距离相等的点在AB的垂直平分线上,所以第二步作线段AB的垂直平分线MN,其交点就是P点.试题解析:作法:作ECD的平分线CF,作线段AB的中垂线MN,MN与CF交于点P,则P就是山庄的位置考点:作图设计13.(2017江苏徐州第27题)如图,将边长为的正三角形纸片按如下顺序进行两次折叠,展开后,得折痕(如图),点为其交点.(1)探求与的数量关系,并说明理由;(2)如图,若分别为上的动点.当的长度取得最小值时,求的长度;如图,若点在线段上,则的最小值= .【答案】(1)AO=2OD,理由见解析;(2);.【解析】试题解析:(1)AO=2OD,理由:ABC是等边三角形,BAO=ABO=OBD

29、=30,AO=OB,BD=CD,ADBC,BDO=90,OB=2OD,OA=2OD;(2)如图,作点D关于BE的对称点D,过D作DNBC于N交BE于P,则此时PN+PD的长度取得最小值,BE垂直平分DD,BD=BD,ABC=60,BDD是等边三角形,BN=BD=,PBN=30, PB=;(3)如图,作Q关于BC的对称点Q,作D关于BE的对称点D,连接QD,即为QN+NP+PD的最小值根据轴对称的定义可知:QBN=QBN=30,QBQ=60,BQQ为等边三角形,BDD为等边三角形,DBQ=90,在RtDBQ中,DQ=QN+NP+PD的最小值=14.(2017浙江嘉兴同学19题)如图,已知,(1)在图中,用尺规作出的内切圆,并标出与边,的切点,(保留痕迹,不必写作法);(2)连接,求的度数【答案】(1)作图见解析;(2)70【解析】试题分析:(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论试题解析:(1)如图1,O即为所求(2)如图2,连接OD,OE,ODAB,OEBC,ODB=OEB=90,B=40,DOE=140,EFD=70考点:1.作图复杂作图;2.三角形的内切圆与内心

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁