2022年京改版七年级数学下册第五章二元一次方程组专项攻克试卷(无超纲).docx

上传人:可****阿 文档编号:30637041 上传时间:2022-08-06 格式:DOCX 页数:20 大小:252.49KB
返回 下载 相关 举报
2022年京改版七年级数学下册第五章二元一次方程组专项攻克试卷(无超纲).docx_第1页
第1页 / 共20页
2022年京改版七年级数学下册第五章二元一次方程组专项攻克试卷(无超纲).docx_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2022年京改版七年级数学下册第五章二元一次方程组专项攻克试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年京改版七年级数学下册第五章二元一次方程组专项攻克试卷(无超纲).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版七年级数学下册第五章二元一次方程组专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知是方程xmy3的解,那么m的值为()A2B2C4D42、如果与是同类项,那么的值是( )ABCD3、若关

2、于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()ABCD4、如果x:y3:2,并且x+3y27,则x与y中较小的值是( )A3B6C9D125、如图,已知长方形中,点E为AD的中点,若点P在线段AB上以的速度由点A向点B运动同时,点Q在线段BC上由点C向点B运动,若与全等,则点Q的运动速度是( )A6或B2或6C2或D2或6、已知方程组的解满足,则的值为( )A7BC1D7、甲、乙两城相距1120千米,一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇若快车平均每小时行驶的路程是动车平均每小时行驶的路程的一半还多5千米,则动车平均每小

3、时比快车平均每小时多行驶的路程为( )A330千米B170千米C160千米D150千米8、如果二元一次方程组的解是二元一次方程的一个解,那么的值是( )A9B7C5D39、根据大马和小马的对话求大马和小马各驮了几包货物大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了”小马说:“我还想给你1包呢!”大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了”小明将这个实际问题转化为二元一次方程组问题设未知数x,y,已经列出一个方程x1y+1,则另一个方程应是()Ax+12yBx+12(y1)Cx12(y1)Dy12x10、为确保信息安全,信息需加密传输,发送方由明文密文(加密)

4、,接收方由密文明文(解密)已知某加密规则为:明文,对应密文,例如,明文1,2,3,4对应密文5,7,18,16当接收方收到密文14,9,23,28时,解密得到的明文是( )A6,4,1,7B1,6,4,7C4,6,1,7D7,6,1,4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮其中,甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮甲、乙两种袋装粗粮每袋成本价分别为袋中A,B,C三种粗粮的成本价之和已知A粗粮每千克成本价为6元,甲种粗

5、粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%,则甲种粗粮中每袋成本价为 _元;若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是 _2、若x2a3+yb+23是二元一次方程,则ab_3、已知关于x、y的二元一次方程组的解为,则a+b的值为 _4、若与是同类项,则x _,y _5、若|xy|+(y+1)20,则x+y_三、解答题(5小题,每小题10分,共计50分)1、中药是我国的传统医药,其独特的疗效体现了我们祖先的智慧,并且在抗击新冠疫情中,中医药发挥了重要的作用现某中药材种植基地欲将一批150吨的重要中药材运往某药品生产厂,现有甲、乙两种车

6、型供运输选择,每辆车的运载能力(假设每辆车均满载)和运费如下表所示:车型甲乙运载量(吨/辆)1012运费(元/辆)700720若全部中药材用甲、乙两种车型一次性运完,需支付运费9900元,问甲、乙两种车型各需多少辆?2、为了落实上级关于新型冠状病毒的肺炎疫情防控工作,某校计划给每个教师配备紫外线消毒灯和体温检测仪已知购买1台紫外线消毒灯和2个体温检测仪要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元(1)求紫外线消毒灯和体温检测仪的单价各为多少元;(2)根据学校实际情况,需要购买紫外线消毒灯和体温检测仪共计75件,总费用不超过38500元,且不少于37500元,该校共有几种购买

7、方案?3、解方程组:(1); (2)4、已知方程组的解满足x为非正数,y为负数(1)求m的取值范围;(2)在(1)的条件下,若不等式(2m+1)x2m1的解为x1,请写出整数m的值5、阳光超市从厂家购进甲、乙两种商品进行销售,若该超市购进甲种商品3件,乙种商品2件,共需花费900元;若购进甲种商品2件,购进乙种商品1件,共需花费500元;(1)求甲、乙两种商品每件的进价分别为多少元;(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为150元,乙种商品每件的售价400元,要使十一月份购进的甲、乙两种商品共80件全部销

8、售完的总利润不少于6500元,那么该超市最多购进甲种商品多少件?-参考答案-一、单选题1、A【分析】直接将代入xmy3中即可得出答案【详解】解:是方程xmy3的解,解得:,故选:A【点睛】本题考查了二元一次方程的解,熟知二元一次方程的解即为能使二元一次方程成立的未知数的值2、A【分析】利用同类项定义列出方程组,求出方程组的解即可得到a与b的值【详解】解:xa+2y3与3x3y2ba是同类项,解得:所以故选:A【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法3、B【分析】解方程组求出x=7k,y=2k,代入2x+3y=6解方程即可【详解】解:,+得:2x

9、=14k,即x=7k,将x=7k代入得:7k+y=5k,即y=2k,将x=7k,y=2k代入2x+3y=6得:14k6k=6,解得:k=故选:B【点睛】此题考查解二元一次方程组,解一元一次方程,掌握解方程及方程组的解法是解题的关键4、B【分析】把x:y=3:2变形为x=y,联立解方程组即可【详解】解:把x:y=3:2变形为:x=y把x=y代入x+3y=27中:y=6x=9x、y中较小的是6故选:B【点睛】本题实质是解二元一次方程组,掌握代入消元法是解题的关键5、A【分析】设Q运动的速度为x cm/s,则根据AEP与BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出

10、即可得出答案【详解】解:ABCD是长方形,A=B=90,点E为AD的中点,AD=8cm,AE=4cm,设点Q的运动速度为x cm/s,经过y秒后,AEPBQP,则AP=BP,AE=BQ,解得,即点Q的运动速度cm/s时能使两三角形全等经过y秒后,AEPBPQ,则AP=BQ,AE=BP,解得:,即点Q的运动速度6cm/s时能使两三角形全等综上所述,点Q的运动速度或6cm/s时能使两三角形全等故选:A【点睛】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了6、D【分析】+

11、得出x+y的值,代入xy1中即可求出k的值【详解】解:+得:3x+3y4+k,解得:,故选:D【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值7、C【分析】设动车平均每小时行驶x千米,快车平均每小时行驶y千米,根据“一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇,且快车平均每小时行驶的路程比动车平均每小时行驶的路程的一半还多5千米”,即可得出关于x,y的二元一次方程组,求出动车与快车平均每小时行驶的路程即可解答【详解】解:设动车平均每小时行驶x千米,快车平均每小时行驶y千米,依题意得: ,解得: , ,故选:C【点睛】本题

12、考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键8、C【分析】先求出的解,然后代入可求出a的值【详解】解:,由+,可得2x4a,x2a,将x2a代入,得2a-y=a,y2aaa,二元一次方程组的解是二元一次方程的一个解,将代入方程3x5y70,可得6a5a70,a7,故选C【点睛】本题考查了二元一次方程的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键9、B【分析】设大马驮x袋,小马驮y袋本题中的等量关系是:2(小马驮的1袋)大马驮的+1袋;大马驮的1袋小马驮的+1袋,据此可列方程组求解【详

13、解】解:设大马驮x袋,小马驮y袋根据题意,得故选:B【点睛】此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系10、A【分析】根据第四个密文列方程4d=28,解一元一次方程求出d,再根据第三个密文,列二元一次方程把d代入,求出第三个明文c,根据第二个密文列二元一次方程,代入第三个明文c,求出第二个明文b,根据第一个密文列二元一次方程,代入第二个明文b,求出第一个明文a得到明文为a,b,c,d即可【详解】解:设明文为a,b,c,d,某加密规则为:明文,对应密文,根据密文14,9,23,28,4d=28,解得d=7,=23,把d=7代入=23得解得=9,把代入=9得,解得a2b1

14、4,把代入a2b14得a2414,解得a=6,则得到的明文为6,4,1,7故选:A【点睛】此题考查了一元一次方程与二元一次方程的应用,弄清题意分步列出方程是解本题的关键二、填空题1、 45 或8:9#8:9或【解析】【分析】先用求出甲中粗粮的成本价,再求出1千克B粗粮成本价+1千克C粗粮成本价,得出乙种粗粮每袋售价,然后设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,根据甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%这两种袋装粗粮的销售利润率达到24%,列出方程求出比例关系【详解】解:甲种粗粮每袋售价为58.5元,利润率为30%,甲种粗粮中每袋成本价为元,甲种粗粮每袋装

15、有3千克A粗粮,1千克B粗粮,1千克C粗粮,1千克B粗粮成本价+1千克C粗粮成本价=45-63=27(元),乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,乙种粗粮每袋售价为乙种粗粮每袋成本价为6+227=60(元),60(1+20%)=72(元)设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,由题意,得4530%x+6020%y=24%(45x+60y),450.06x=600.04y,即,故答案为:45,【点睛】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键2、3【解析】【分析】先根据二元一次方程的定义求出a、b的值,然后代入

16、ab计算即可【详解】解:x2a3+yb+23是二元一次方程,2a31,b+21,a2,b1,则ab2(1)2+13故答案为:3【点睛】本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程3、【解析】【分析】将代入中,求出的值,然后将的值代入求出的值,计算即可【详解】解:关于x、y的二元一次方程组的解为,将代入中得:,解得:,即,将、代入中得:,故答案为:【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解是能使方程组成立的未知数的值4、 2 -1【解析】【分析】根据同类项的概念建

17、立关于x,y的方程组,解方程组即可得出答案【详解】与是同类项, 解得 故答案为:2,-1【点睛】本题主要考查同类项,掌握同类项的概念及解二元一次方程组的方法是关键5、2【解析】【分析】根据绝对值的非负性列出方程组求出x、y的值,代入所求代数式计算即可【详解】解:|xy|+(y+1)20,解得:, x+y2故答案为:2【点睛】本题主要考查了绝对值的非负性,解二元一次方程组,利用绝对值的非负性列出方程组是解题的关键三、解答题1、甲种车型需9辆,乙种车型需5辆【分析】设甲种车型需辆,乙种车型需辆,然后根据药材一共有150吨,运费一共9900元,列出方程求解即可【详解】解:设甲种车型需辆,乙种车型需辆

18、,根据题意得解得,甲种车型需9辆,乙种车型需5辆答:甲种车型需9辆,乙种车型需5辆【点睛】本题主要考查了二元一次方程组的应用,解题的关键在于能够准确理解题意,列出方程求解2、(1)紫外线消毒灯和体温检测仪的单价分别为650元、400元;(2)有5种购买方案【分析】(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,根据“购买1台紫外线消毒灯和2个体温检测仪需要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元”,即可列出关于、的二元一次方程组,解方程组即可得出结论;(2)设购买紫外线消毒灯台,则购买体温检测仪个,根据“购买的总费用不超过38500元,且不少于37500元,”,即可

19、得出关于的一元一次不等式组,解不等式组即可得出结论【详解】解:(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,则由题意得,解得答:紫外线消毒灯的单价为650元,体温检测仪的单价为400元;(2)设购买紫外线消毒灯台,则购买体温检测仪个,解得:,为正整数,该校有5种购买方案【点睛】本题考查了二元一次方程组的应用已经一元一次不等式组的应用,解题的关键是:(1)根据数量关系列出关于、的二元一次方程组;(2)根据数量关系列出关于的一元一次不等式组本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或不等式组)是关键3、(1);(2)【分析】(1)利用代入消元法解二元一次方程组

20、即可;(2)首先整理方程,然后利用加减消元法解二元一次方程组即可【详解】解:(1),由,可得:y3x7,代入,可得:x3(3x7)1,解得:x2,把x2代入,解得:y1,原方程组的解为(2)原方程可化为,2,可得:3y9,解得:y3,把y3代入,解得:x5,原方程组的解为【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数4、(1)2m3;(2)1【分析】(1)先求出二元一次方程组的解为,然后根据x为非正数,y为负数,即x0,y0,列出不等式求解即可;(2)先把原不等式移项得到(2m+1)x2m+1根据不等式(2m+1)x2m1的解为x1,

21、可得2m+10,由此结合(1)所求进行求解即可【详解】解:(1)解方程组用+得:,解得,把代入中得:,解得,方程组的解为:x为非正数,y为负数,即x0,y0,解得2m3;(2)(2m+1)x2m1移项得:(2m+1)x2m+1不等式(2m+1)x2m1的解为x1,2m+10,解得m又2m3,m的取值范围是2m又m是整数,m的值为1【点睛】本题主要考查了解二元一次方程组,解一元一次不等式组,解一元一次不等式,解题的关键在于能够熟知相关求解方法5、(1)甲种商品每件进价为100,乙种商品每件进价300元;(2)30件【分析】(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据等量关系:3件甲

22、种商品的花费+2件乙种商品的花费=900;2件甲种商品的花费+1件乙种商品的花费=500,即可列出方程组,解方程组即可;(2)设该超市购进甲种商品m件,根据不等关系:甲商品的利润+乙商品的利润6500,列出不等式,不等式即可,再取不等式解集中最大的整数值即可【详解】(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据题意的 解得故甲种商品每件进价为100,乙种商品每件进价300元(2)设该超市购进甲种商品m件,根据题意得:(150100)m(400300)(80m)6500解得m30m为整数m的最大整数值为30即该超市最多购进甲种商品30件【点睛】本题考查了解二元一次方程组及解不等式的应用,关键是理解题意,找到等量关系和不等关系,然后列出方程组和不等式即可解决问题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁