2021-2022学年基础强化北师大版八年级数学下册第四章因式分解章节训练练习题(无超纲).docx

上传人:可****阿 文档编号:30629007 上传时间:2022-08-06 格式:DOCX 页数:16 大小:216.42KB
返回 下载 相关 举报
2021-2022学年基础强化北师大版八年级数学下册第四章因式分解章节训练练习题(无超纲).docx_第1页
第1页 / 共16页
2021-2022学年基础强化北师大版八年级数学下册第四章因式分解章节训练练习题(无超纲).docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2021-2022学年基础强化北师大版八年级数学下册第四章因式分解章节训练练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化北师大版八年级数学下册第四章因式分解章节训练练习题(无超纲).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第四章因式分解章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中,从左到右的变形是因式分解的是( )ABCD2、下列各组式子中,没有公因式的一组是()A2xy与xB(

2、ab)2与abCcd与2(dc)Dxy与x+y3、计算的值是()ABCD24、已知a+b=3,ab=2,则a3b+2a2b2+ab3 的值为( )A5B6C18D125、下列多项式中,不能用公式法因式分解的是( )ABCD6、下列因式分解正确的是( )A16m24(4m2)(4m2)Bm41(m21)(m21)Cm26m9(m3)2D1a2(a1)(a1)7、下列从左到右的变形,是分解因式的是()Axy2(x1)=x2y2xy2B2a2+4a=2a(a+2)C(a+3)(a3)=a29Dx2+x5=(x2)(x+3)+18、已知a2(b+c)b2(a+c)2021,且a、b、c互不相等,则c2

3、(a+b)2020()A0B1C2020D20219、多项式3ax2 - 3ay2分解因式的结果是( )A3a(x2 - y2)B3a(x - y) 2C3a(y + x)(y - x)D3a(x + y)(x - y)10、多项式分解因式的结果是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若实数x满足,则_2、因式分解:_3、已知x2+mx+16能用完全平方公式因式分解,则m的值为 _4、因式分解:ax22axa_5、因式分解:x+xyy=_三、解答题(5小题,每小题10分,共计50分)1、已知实数a、c满足,求的值2、分解因式(1)(2)3、 ((

4、1)(2)小题计算,(3)(4)小题因式分解)(1);(2)(x2y)(3x+2y);(3)9(xy)+4(yx) ; (4) a+2x+ 4、(1)计算:(x+2)(4x1)(2x1)2;(2)因式分解:a3b2a2b2+ab35、对于多项式x35x2+11x10,如果我们把x2代入此多项式,发现多项式x35x2+11x100,这时可以断定多项式中有因式(x2),于是我们可以把多项式写成:x35x2+11x10(x2)(x2+mx+n),以上这种因式分解的方法叫试根法(1)求式子中m、n的值;(2)用试根法对多项式x35x2+3x+9进行因式分解-参考答案-一、单选题1、C【分析】根据因式分

5、解的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. ,不是几个整式的积的形式,A选项不是因式分解;B. ,不是几个整式的积的形式,B选项不是因式分解C. ,符合因式分解的定义,C是因式分解. D. ,不是几个整式的积的形式,D选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.2、D【分析】根据公因式是各项中的公共因式逐项判断即可【详解】解:A、2xy与x有公因式x,不符合题意;B、(ab)2与ab有公因式ab,不符合题意;C、

6、cd与2(dc)有公因式cd,不符合题意;D、xy与x+y没有公因式,符合题意,故选:D【点睛】本题考查公因式,熟练掌握确定公因式的方法是解答的关键3、B【分析】直接找出公因式进而提取公因式,进行分解因式即可【详解】解:故选:B【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键4、C【分析】将a3b+2a2b2+ab3因式分解为ab(a+b)2,然后将a+b=3,ab=2,代入即可【详解】解:a3b+2a2b2+ab3ab(a2+2ab+b2)ab(a+b)2,a+b=3,ab=2,原式2322918,故选:C【点睛】本题考查了因式分解化简求值,正确分解因式是解题的关键5、D

7、【分析】利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.【详解】解:故A不符合题意;故B不符合题意;故C不符合题意;,不能用公式法分解因式,故D符合题意;故选D【点睛】本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.6、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义即可求解【详解】解:A、16m2-4=4(4 m2-1)=4(m+1)(m-1),故该选项错误;B、m4-1=(m2+1)(m2-1)=(m+1)(m-1)(m2+1),故该选项错误;C、m2-6m+9

8、=(m-3)2,故该选项正确;D、1-a2=(a+1)(1-a),故该选项错误;故选:C【点睛】本题考查了因式分解的意义,属于基础题,关键是掌握因式分解的定义一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止7、B【分析】根据因式分解的意义对各选项进行逐一分析即可【详解】解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、符合因式分解的意义,是因式分解,故本选项正确,符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意故选:B

9、【点睛】本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式8、B【分析】根据题意先通过已知等式,找到a,b,c的关系再求值即可得出答案【详解】解:a2(b+c)b2(a+c)a2b+a2cab2b2c0ab(ab)+c(a+b)(ab)0(ab)(ab+ac+bc)0aba2(b+c)2021a(ab+ac)2021a(bc)2021abc2021abc2021原式c(ac+bc)2020c(ab)2020abc2020202120201故选:B【点睛】本题考查用因式分解求代数式的值,利用题中等式得到ab+bc+ac=0

10、是解答本题的关键9、D【分析】首先提公因式3a,再利用平方差进行分解即可【详解】解:3ax2 - 3ay2 ,故选:D【点睛】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解解题关键是掌握提公因式法与公式法分解因式10、B【分析】先提取公因式a,再根据平方差公式进行二次分解平方差公式:a2-b2=(a+b)(a-b)【详解】解:ax2-ay2=a(x2-y2)=a(x+y)(x-y)故选:B【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底二

11、、填空题1、2022【分析】将x22x+1,x22x1代入计算可求解【详解】解:x22x10,x22x+1,x22x1,原式2xx22x26x+20202x(2x+1)2x26x+20204x2+2x2x26x+20202x24x+20202(x22x)+202021+20202022故答案为:2022【点睛】本题主要考查因式分解的应用,适当的进行因式分解,整体代入是解题的关键2、【分析】先把原式化为 再利用平方差公式分解因式,再把其中一个因式按照平方差公式继续分解,从而可得答案.【详解】解:原式,故答案为:【点睛】本题考查的是利用平方差公式分解因式,注意分解因式一定要分解到每个因式都不能再分

12、解为止.3、【分析】利用完全平方公式的结构特征判断,确定出m的值即可得到答案【详解】解:要使得能用完全平方公式分解因式,应满足,故答案为:【点睛】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键4、【分析】提取公因式后,用完全平方公式因式分解即可【详解】原式=故答案为:【点睛】本题考查了因式分解,因式分解是初中数学的重要内容之一选择正确的分解方法是学好因式分解的关键因式分解的题目多以填空题或选择题的形式考查提公因式法和公式法的综合运用因式分解的基本思路是:一个多项式如有公因式首先提取公因式,然后再用公式法进行因式分解如果剩余的是两项,考虑使用平方差公式,如果剩

13、余的是三项,则考虑使用完全平方公式同时,因式分解要彻底,要分解到不能分解为止因式分解常见技巧:局部不符看整体,整体不符局部,实在不行看变形5、【分析】综合利用提公因式法和完全平方公式进行因式分解即可得【详解】解:原式,故答案为:【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题关键三、解答题1、1【分析】化简可得,可知只有,时满足等式,故,则【详解】解:由已知得 即【点睛】本题考查了已知式子值求代数式值,根据已知条件求出代数式的值,然后把求出的代数值代入即可求解,结合绝对值的性质和十字相乘法因式分解是解出代数值的关键2、(1)4xy(y+1)2;(2)-5(a-b)2【分析】(1)提公因

14、式后利用完全平方公式分解即可;(2)提公因式后利用完全平方公式分解即可【详解】(1), ,4xy(y+1)2;(2), ,-5(a-b)2【点睛】本题考查了提公因式法与公式法的综合运用,一定要注意有公因式先提公因式,然后再继续分解3、(1)-5;(2)28;(3);(4)a【分析】(1)根据=2, ,整理计算即可;(2)利用多项式的乘法法则,完全平方公式展开,合并同类项即可;(3)根据(y-x)=-(x-y),提取公因式后,套用平方差公式分解即可;(4) 先提取公因式a,后套用和的完全平方公式分解即可【详解】解:(1) =2+1-9+1-5;(2)(x2y)(3x+2y)3+2xy6xy4+4

15、xy428;(3)9(xy)+4(yx)= =;(4)a+2x+a(+2ax+)a【点睛】本题考查了绝对值,零指数幂,负整数指数幂,完全平方公式,因式分解,熟练掌握零指数幂,负整数指数幂,完全平方公式和公式法分解因式是解题的关键4、(1)11x-3;(2)ab(a-b)2【分析】(1)先按照多项式乘以多项式的法则,完全平方公式进行整式的乘法运算,再合并同类项即可;(2)先提取公因式 再按照完全平方公式分解因式即可.【详解】解:(1)(x+2)(4x1)(2x1)2 (2)a3b2a2b2+ab3 【点睛】本题考查的是整式的乘法运算,利用完全平方公式进行简便运算,同时考查综合提公因式与公式法分解因式,掌握“完全平方公式的应用”是解本题的关键.5、(1);(2)【分析】(1)把由多项式乘以多项式展开,与对应相等即可得出答案;(2)把代入中得,故可把写成,同(1)解出、的值,代入即可进行因式分解【详解】(1),解得:;(2)把代入中得:,解得:,【点睛】本题考查因式分解,掌握试根法的定义是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁