椭圆经典编辑精讲例题详细规范标准答案.doc

上传人:小** 文档编号:3036241 上传时间:2020-06-23 格式:DOC 页数:9 大小:182.65KB
返回 下载 相关 举报
椭圆经典编辑精讲例题详细规范标准答案.doc_第1页
第1页 / 共9页
椭圆经典编辑精讲例题详细规范标准答案.doc_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《椭圆经典编辑精讲例题详细规范标准答案.doc》由会员分享,可在线阅读,更多相关《椭圆经典编辑精讲例题详细规范标准答案.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-!椭圆经典精讲 1、基本概念、基本图形、基本性质题1、题面:集合的关系可表述为( ).A. B. C. D.AB = 答案:D. 变式一题面:设双曲线的左,右焦点为F1,F2,左,右顶点为M,N,若PF1F2的一个顶点P在双曲线上,则PF1F2的内切圆与边F1F2的切点的位置是()A在线段MN的内部B在线段F1M的内部或NF2内部C点N或点MD以上三种情况都有可能答案:C.详解: 若P在右支上,并设内切圆与PF1,PF2的切点分别为A,B,则|NF1|NF2|PF1|PF2|(|PA|AF1|)(|PB|BF2|)|AF1|BF2|.所以N为切点,同理P在左支上时,M为切点变式二题面:若直线

2、mxny4和圆O:x2y24没有交点,则过点(m,n)的直线与椭圆1的交点个数为()A至多1个 B2个C1个 D0个答案:B.详解:由题意得2,即m2n24,则点(m,n)在以原点为圆心,以2为半径的圆内,此圆在椭圆1的内部题2、题面:如图,倾斜圆柱形容器,液面的边界近似一个椭圆。若容器底面与桌面成角为,则这个椭圆的离心率是 。答案:解题步骤: 由图,短轴就是内径,长轴为,即:,.变式一题面:已知椭圆1(ab0)的两顶点为A(a,0),B(0,b),且左焦点为F,FAB是以角B为直角的直角三角形,则椭圆的离心率e为()A. B.C. D.答案:B.详解: 由题意得a2b2a2(ac)2,即c2

3、aca20,即e2e10,解得e.又e0,故所求的椭圆的离心率为.变式二题面:(2012新课标全国卷)设F1,F2是椭圆E:1(ab0)的左、右焦点,P为直线x上一点,F2PF1是底角为30的等腰三角形,则E的离心率为()A. B.C. D.答案:C.详解:由题意可得|PF2|F1F2|,22c,3a4c,e.题3、题面:椭圆与圆 的公共点个数是 。答案:1.变式一题面:已知椭圆C1:1(a1b10)和椭圆C2:1(a2b20)的焦点相同且a1a2.给出如下四个结论:椭圆C1和椭圆C2一定没有公共点;aabb;a1a2b1b2.其中,所有正确结论的序号是()A BC D答案:C.详解: 由已知

4、条件可得abab,可得aabb,而a1a2,可知两椭圆无公共点,即正确;又aabb,知正确;由abab,可得abba,则a1b2,a2b1的大小关系不确定,不正确,即不正确;a1b10,a2b20,a1a2b1b20,而又由(a1a2)(a1a2)(b1b2)(b1b2),可得a1a2b1b2,即正确综上可得,正确的结论序号为.变式二题面:设椭圆1(ab0)的离心率e,右焦点为F(c,0),方程ax2bxc0的两个实根分别为x1和x2,则点P(x1,x2)()A必在圆x2y22内B必在圆x2y22上C必在圆x2y22外D以上三种情形都有可能 答案:A,详解:由已知得e,则c.又x1x2,x1x

5、2,所以xx(x1x2)22x1x22,因此点P(x1,x2)必在圆x2y22内2、关注几何(甚至就是平面几何)题4、题面:设AB是经过椭圆中心的弦,F是椭圆的一个焦点,则ABF的面积最大值为 .答案:.变式一题面:(2012天津高考)设m,nR,若直线l:mxny10与x轴相交于点A,与y轴相交于点B,且l与圆x2y24相交所得弦的长为2,O为坐标原点,则AOB面积的最小值为_答案:3.详解:由直线与圆相交所得弦长为2,知圆心到直线的距离为,即,所以m2n22|mn|,所以|mn|,又A,B,所以AOB的面积为3,最小值为3. 变式二题面:已知椭圆方程为x21,斜率为k(k0)的直线l过椭圆

6、的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m)(1)求m的取值范围;(2)求MPQ面积的最大值答案:(1) 0m.(2) .详解:(1)设直线l的方程为ykx1,由可得(k22)x22kx10.设P(x1,y1),Q(x2,y2),则x1x2,x1x2.可得y1y2k(x1x2)2.设线段PQ的中点为N,则点N的坐标为,由题意有kMNk1,可得k1,可得m,又k0,所以0m.(2)设椭圆的焦点为F,则SMPQ|FM|x1x2|,所以MPQ的面积为(0mb0)的左,右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,F1AF260.(1)求椭圆C的离心

7、率;(2)已知AF1B的面积为40,求a,b的值答案:(1) e.(2) a10,b5. 详解:(1)由题意可知,AF1F2为等边三角形,a2c,所以e.(2)法一:a24c2,b23c2,直线AB的方程为y(xc)将其代入椭圆方程3x24y212c2,得B,所以|AB|c.由SAF1B|AF1|AB|sin F1ABaca240,解得a10,b5.法二:设|AB|t.因为|AF2|a,所以|BF2|ta.由椭圆定义|BF1|BF2|2a可知,|BF1|3at,再由余弦定理(3at)2a2t22atcos 60可得,ta.由SAF1Baaa240知,a10,b5. 题6、题面:过椭圆C:上一点

8、向圆O:引两条切线PA、PB,(A,B为切点),若 ,则P点的坐标是 .答案:.解题步骤: 连接,;(几何思考的意识、辅助线添加习惯);标注三个垂直符号;(把初中的习惯恢复起来)看出是矩形;进一步明确是正方形;,且意识到;椭圆上到中心的距离等于半长轴的点只有长轴端点。变式一题面:设F1,F2分别是椭圆y21的左、右焦点,P是第一象限内该椭圆上的一点,且PF1PF2,则点P的横坐标为()A1 B.C2 D.答案:D.详解:由题意知,点P即为圆x2y23与椭圆y21在第一象限的交点,解方程组得点P的横坐标为. 变式二题面:已知圆的半径为2,椭圆的左焦点为,若垂直于x轴且经过F点的直线与圆M相切,则a的值为( )AB1C2D4答案:C.详解:由题意得,即(m0),则圆心M的坐标为(1,0)直线l与圆M相切,即有,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁