《时间序列分析根据ARIMA模型的城镇居民人均收入的预测.doc》由会员分享,可在线阅读,更多相关《时间序列分析根据ARIMA模型的城镇居民人均收入的预测.doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、.-基于ARIMA模型的城镇居民人均收入的预测摘要 :城镇居民可支配收入一向较为是反映人民生活水平和国内经济发展状况的重要指标,故对于城镇居民可支配收入的情况了解几何就显得尤为重要。在此对19802015年我国城镇居民人均可支配收入的数据进行训练集和检验集的划分处理后,运用SAS9.3统计软件建立了ARIMA(1,1,0)城镇居民人均可支配收入的拟合模型:。并预测2016年城镇居民人均的可支配收入为29284.77元,为政府部门提供了制定相关惠民政策的参考有着极为重要的作用。一、 引言城镇居民可支配收入是指反映居民家庭全部收入在能用于安排家庭日常生活支出的部分收入。随着经济的发展,国家财政在民
2、生政策和民生福利上的不断加大投入,在此城镇居民的可支配收入就成为了一个非常重要的参考指标,可以用来衡量城镇居民的生活水平,从而是政府制定相关政策的重要依据。就目前而言国内针对城镇居民可支配收入的预测研究的文献主要采用两种预测方法平稳时间序列预测法和灰色预测法。一种是由著名学者邓聚龙教授提出的灰色预测系统理论,目前已经广泛应用到了经济、科教、工农业、气象、军事等领域,并取得了较好的预测效果。其中游中胜以重庆城镇居民家庭为例构造了GM(1,1)的家庭人均可支配收入模型,并分别预测了20132015年的人均可支配收入。另一种则是通过建立ARIMA模型进行预测,通过对数据的处理分析最终得到较好的预测结
3、果。文献有蒋琴莉利用ARIMA模型预测了我国城镇居民家庭人均可支配收入并提出建设性的政策意见。本文运用软件SAS9.3对中国统计年鉴201619802015年我国城镇居民人均可支配收入的数据进行分析,此外,为了更好地检验数据的拟合效果,我们将数据分为训练集和检验集,并运用ARIMA模型对城镇居民可支配收入进行了预测。二、 ARlMA模型原理ARIMA模型全称为自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),具有如下结构: (1)式中,;,为平稳可逆ARMA(P, q)模型的自回归系数多项式;,为平稳可逆ARMA
4、(p,q)模型的移动平滑系数多项式。求和自回归移动模型这个名字的由来是因为d阶差分后序列可以表示为:式中,即差分后序列等于原序列的若干序列值的加权和,而对它又可以拟合自回归移动平均模型,所以称它为求和自回归移动平均模型。式(5.1)可以简记为: (2)式中,为零均值白噪声序列。由式2容易看出,ARIMA模型的实质就是差分运算与ARMA模型的组合。这一关系意义重大。这说明任何非平稳序列如果能通过适当阶数的差分实现差分后平稳,就可以对差分后序列进行ARMA模型拟合了。而ARMA模型的分析方法非常成熟,这意味着对差分序列的分析也将是非常简单、非常可靠的。特别的,当d=0时,ARIMA(p,d,q)模
5、型实际就是ARMA(p,q)模型。当p=0时,ARIMA(0,d,q)模型可以简记IMA(d,q)模型。当d=1,p=q=0时,ARIMA(0,1,0)模型为: (3)该模型又称为随机游走模型。三 、数据的介绍以及描述本文选取中国统计年鉴201619802015年我国城镇居民人均可支配收入作为研究数据。通过利用SAS9.3软件对城镇居民人均可支配收入绘制时序图(如图1),可以清晰的了解到城镇居民人均可支配收入序列蕴含着曲线递增的长期趋势,是非平稳时间序列。图1 19802015年城镇居民人均可支配收入的时序图3.1数据预处理为了更好地检验数据的拟合效果,我们将数据分为训练集和检验集。19802
6、012年的数据作为训练集用于建模,余下3年数据作为检验集作为检验模型预测能力好坏的标准。由于初步了解数据发现该序列呈现明显的上升趋势,为非平稳序列。且通过观察图形我们可以看出时序图呈指数函数上升的趋势,于是我们对该序列做对数变换,变换后的时序图(如图2)所示。图2 19802012年城镇居民人均可支配收入对数变换时序图图2显示,取对数后的时序图仍然蕴含着线性递增的趋势,还需要对该城镇居民人均可支配收入进行1阶差分运算来实现趋势平稳。结果如图3所示。图3 19802012年城镇居民人均可支配收入的1阶差分时序图1阶差分后的序列不再呈现明显的趋势性,可以直观的初步确认该序列已经平稳。四、ARIMA
7、模型的建立4.1 序列的平稳性检验与白噪声检验时序图显示该序列的信息基本被差分运算充分提取,为了进一步验证其平稳性,我们考察差分后序列的自相关图(如图4)。图4 19802012年城镇居民人均可支配收入的1阶差分后自相关图自相关图显示,延迟1阶之后,自相关系数具有明显的短期相关性,可以认为该差分后序列平稳。表1 白噪声检验而对于白噪声的检验,我们由表1显示,在各阶延迟下LB检验统计量的P值在(a=0.1)的水平下,拒绝序列纯随机的原假设,我们可以断定城镇居民人均可支配收入的1阶差分后的序列属于非白噪声序列。结合前面平稳性的检验结果,可以说明该序列为平稳非白噪声序列。4.2模型的定阶与拟合为了确定模型的阶数,我们还需要考虑偏自相关图(图5)。图5偏自相关图偏自相关图显示,除了延迟1阶的偏西相关系数显著大于2倍标准差之外,其他阶数的偏自相关系数都比较小。根据自相关图和偏相关图的特点,我们来进行模型的定阶。由于偏相关图中只有延迟1阶的偏相关系数显著大于2倍标准差,所以拟合定阶模型AR(1),并剔除了常数项,(见表2)。表2 未知参数估计表由上表可知,t统计量的P值小于非常小(=1jan1980d;run;