《时间序列分析VAR模型实验.doc》由会员分享,可在线阅读,更多相关《时间序列分析VAR模型实验.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、!-基于VAR模型的我国房地产市场与汇率波动的因果关系VAR模型实验第一部分 实验分析目的及方法现选取人民币对美元汇率以及商品房房价作为变量构建VAR模型。对于不满足单位根检验的序列采取对数化或差分处理,使其成为平稳序列再进行模型的拟合。对于商品房房价这一变量,由于全国各省市差异较大,故此处采用全国房地产开发业综合景气指数这一变量。此外,为了消除春节假期不固定因素带来的影响,增强数据的可比性,按照国家统计制度,从2012年起,不单独对1月份统计数据进行调查,1-2月份数据一起调查,一起发布。所以国房景气指数p这一序列缺少每年一月份的相关数据,属于非随机、不可忽略缺失,在此采用平均值填充的方法,
2、补足数据。 第二部分 实验样本2.1数据来源数据来源于中经网统计数据库。具体数据见附录表。2.2所选数据变量由于我国于2005年7月实行第二次汇改,此次汇改以市场供求为基础、参考一篮子货币进行调节、有管理的浮动汇率制度取代了过去人民币汇率长达10年的紧盯美元的固定汇率体制。故本实验拟选取2005年07月到2014年10月我国以月为单位的数据。,用以上两个变量来构建VAR模型,并利用该模型进行分析预测。第四部分 模型构建4.1判断序列的平稳性4.1.1汇率E序列首先绘制出E的折线图,结果如下图:图4.1 汇率E的曲线图从图中可以看出,汇率E序列较强的趋势性,由此可以初步判断该序列是非平稳的。为了
3、减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下:图4.2 lm的曲线图 对数化后的趋势性减弱,但仍存在一定的趋势性,下面对lm进行一阶差分处理,去除趋势性,得到新变量dlm,观察dlm的曲线图。图4.3 DLE的曲线图从图中可以看出,dle序列的趋势性基本已经消除,且新变量dle基本围绕0上下波动,因此选择形式为yt=yt-1+ut 进行单位根检验:表4.1 单位根输出结果Null Hypothesis: DLE has a unit rootExogenous: ConstantLag Length: 2 (Automatic - based on SIC, ma
4、xlag=12)t-StatisticProb.*Augmented Dickey-Fuller test statistic-3.0316730.0351Test critical values:1% level-3.4919285% level-2.88841110% level-2.581176*MacKinnon (1996) one-sided p-values.Augmented Dickey-Fuller Test EquationDependent Variable: D(DLE)Method: Least SquaresDate: 11/15/14 Time: 20:20Sa
5、mple (adjusted): 2005M11 2014M10Included observations: 108 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.DLE(-1)-0.3530050.116439-3.0316730.0031D(DLE(-1)-0.5027300.115417-4.3557680.0000D(DLE(-2)-0.3115310.093265-3.3402580.0012C-0.0008880.000470-1.8875920.0619R-squared0.450240Mean dep
6、endent var1.15E-05Adjusted R-squared0.434382S.D. dependent var0.005058S.E. of regression0.003804Akaike info criterion-8.269046Sum squared resid0.001505Schwarz criterion-8.169708Log likelihood450.5285Hannan-Quinn criter.-8.228768F-statistic28.39119Durbin-Watson stat2.061613Prob(F-statistic)0.000000单位
7、根统计量ADF=-3.031673小于临界值,且P为0.0351,因此该序列不是单位根过程,即该序列是平稳序列。4.1.2国房景气指数P序列首先作出P序列的时序图:图4.4 P的曲线图由于每年一月份的数据缺失,故取相邻两项进行平均补全数据,得到新序列的时序图如下:图4.5 P的曲线图(补全)由上图可知,该序列P可能存在一定的趋势性和季节性,先进行单位根检验,确定改序列是否平稳。由于序列表4.2 单位根输出结果Null Hypothesis: P has a unit rootExogenous: Constant, Linear TrendLag Length: 3 (Automatic -
8、based on SIC, maxlag=12)t-StatisticProb.*Augmented Dickey-Fuller test statistic-3.9724570.0124Test critical values:1% level-4.0452365% level-3.45195910% level-3.151440*MacKinnon (1996) one-sided p-values.由单位根检验结果可知,T值小于临界值,且P=0.0124,在5%的置信水平下,该序列不存在单位根过程。由于汇率E序列为一阶单整序列,并进行了一阶差分处理,因此样本数量减少,在下面的操作中,所有
9、的样本序列调整为2005-08至2014-10。4.2模型参数识别先进行VAR模型的拟合,初步选定滞后阶数为3:表4.3 拟合输出结果Vector Autoregression EstimatesDate: 11/22/14 Time: 22:20Sample (adjusted): 2005M11 2014M10Included observations: 108 after adjustmentsStandard errors in ( ) & t-statistics in DLEPDLE(-1)0.063183-19.12274(0.09626)(14.1374) 0.65638-1.
10、35263DLE(-2)0.11679815.42129(0.09604)(14.1052) 1.21615 1.09330DLE(-3)0.24526016.39171(0.09617)(14.1243) 2.55030 1.16053P(-1)-9.04E-051.490708(0.00066)(0.09765)-0.13593 15.2656P(-2)-0.000583-0.355442(0.00118)(0.17380)-0.49226-2.04508P(-3)0.000346-0.160740(0.00067)(0.09872) 0.51479-1.62821C0.0313282.5
11、71540(0.01274)(1.87084) 2.45943 1.37454R-squared0.2950330.979509Adj. R-squared0.2531540.978292Sum sq. resids0.00139029.99247S.E. equation0.0037100.544936F-statistic7.044848804.6767Log likelihood454.8094-84.06138Akaike AIC-8.2927661.686322Schwarz SC-8.1189241.860164Mean dependent-0.002527100.2406S.D.
12、 dependent0.0042933.698585Determinant resid covariance (dof adj.)4.08E-06Determinant resid covariance3.57E-06Log likelihood370.8871Akaike information criterion-6.609021Schwarz criterion-6.261337再进行滞后阶数的确定:表4.4 最优滞后阶数的判断VAR Lag Order Selection CriteriaEndogenous variables: DLE PExogenous variables: C
13、Date: 11/22/14 Time: 22:22Sample: 2005M07 2014M10Included observations: 99LagLogLLRFPEAICSCHQ0134.7784NA0.000234-2.682392-2.629965-2.6611801302.5627325.39998.57e-06-5.991165-5.833886-5.9275302329.023050.247835.45e-06-6.444909-6.182775*-6.338849*3334.37339.943949*5.30e-06*-6.472187*-6.105200-6.323704
14、4337.45315.5997425.40e-06-6.453598-5.981758-6.2626915339.75894.0991765.60e-06-6.419372-5.842679-6.1860416345.04989.1923245.46e-06-6.445451-5.763905-6.1696967345.54840.8460765.87e-06-6.374716-5.588316-6.0565378346.73691.9687606.23e-06-6.317917-5.426663-5.9573149352.58019.4436396.01e-06-6.355154-5.359
15、047-5.95212810353.77141.8770826.39e-06-6.298411-5.197451-5.85296111354.36490.9112796.87e-06-6.229594-5.023780-5.74172012356.46173.1346447.18e-06-6.191146-4.880479-5.660848* indicates lag order selected by the criterionLR: sequential modified LR test statistic (each test at 5% level)FPE: Final predic
16、tion errorAIC: Akaike information criterionSC: Schwarz information criterionHQ: Hannan-Quinn information criterion由上边可知,根据信息准则,采取少数服从多数原则,取滞后阶数为3,此外取滞后阶数为2(SC为 -6.182775)或取滞后阶数为3(SC为-6.105200)时,两者SC值相差不是很大。3.3模型参数估计选取了最优滞后阶数3,进行模型的拟合。拟合结果如下:表4.5 VAR(3)模型估计结果Vector Autoregression EstimatesDate: 11/22
17、/14 Time: 22:23Sample (adjusted): 2005M11 2014M10Included observations: 108 after adjustmentsStandard errors in ( ) & t-statistics in DLEPDLE(-1)0.063183-19.12274(0.09626)(14.1374) 0.65638-1.35263DLE(-2)0.11679815.42129(0.09604)(14.1052) 1.21615 1.09330DLE(-3)0.24526016.39171(0.09617)(14.1243) 2.550
18、30 1.16053P(-1)-9.04E-051.490708(0.00066)(0.09765)-0.13593 15.2656P(-2)-0.000583-0.355442(0.00118)(0.17380)-0.49226-2.04508P(-3)0.000346-0.160740(0.00067)(0.09872) 0.51479-1.62821C0.0313282.571540(0.01274)(1.87084) 2.45943 1.37454R-squared0.2950330.979509Adj. R-squared0.2531540.978292Sum sq. resids0
19、.00139029.99247S.E. equation0.0037100.544936F-statistic7.044848804.6767Log likelihood454.8094-84.06138Akaike AIC-8.2927661.686322Schwarz SC-8.1189241.860164Mean dependent-0.002527100.2406S.D. dependent0.0042933.698585Determinant resid covariance (dof adj.)4.08E-06Determinant resid covariance3.57E-06
20、Log likelihood370.8871Akaike information criterion-6.609021Schwarz criterion-6.261337由回归结果可知,VAR模型的参数估计一部分显著。估计的方程为:DLE = 0.0631825185907 * DLE(-1) + 0.116798166932 * DLE(-2) + 0.245260334897 * DLE(-3) - 9.03782278173e-05 * P(-1) - 0.000582535557655 * P(-2) + 0.000346029705954 * P(-3) + 0.0313284849
21、005P = - 19.1227437147 * DLE(-1) + 15.421290462 * DLE(-2) + 16.3917067335 * DLE(-3) + 1.4907076294 * P(-1) - 0.355441747867 * P(-2) - 0.160740461814 * P(-3) + 2.571539785444.4模型检验首先对模型进行平稳性检验表4.6 VAR模型平稳性检验的表格显示Roots of Characteristic PolynomialEndogenous variables: DLE PExogenous variables: CLag sp
22、ecification: 1 3Date: 11/22/14 Time: 22:27RootModulus0.883466 - 0.097039i0.8887790.883466 + 0.097039i0.8887790.6703000.670300-0.321875 - 0.501863i0.596213-0.321875 + 0.501863i0.596213-0.2395920.239592No root lies outside the unit circle.VAR satisfies the stability condition.图4.6 VAR模型平稳性检验的图形显示由上表和上
23、图可知,VAR模型的特征方程的根均在单位园内,因此VAR模型是平稳的。下面进行残差的自相关性的检验,检验结果如下:图4.7 VAR模型各方程残差项的自相关图由上图可知,VAR模型允许不同方程的残差之间存在交叉相关性,但是残差自身不存在自相关性,因此,观察残差自身的自相关图,可以看出自相关系数均位于置信区间内,说明残差不存在自相关性。第五部分 模型应用5.1格兰杰因果检验接下来做两两变量之间的格兰杰因果检验。序列P与序列DLE:表5.1 序列P与序列DLE格兰杰因果检验表Pairwise Granger Causality TestsDate: 11/21/14 Time: 23:32Sampl
24、e: 2005M07 2014M10Lags: 3Null Hypothesis:ObsF-StatisticProb.P does not Granger Cause DLE1082.777600.0451DLE does not Granger Cause P1.342860.2648由上述结果可知,在5%的置信水平下,P是dle的格兰杰原因,即全国房地产开发业综合景气指数是人民币对美元汇率变动幅度的格兰杰原因。5.2脉冲响应由于脉冲响应函数收到变量顺序的影响,因此其结果与分析的主观因素有关,对于这三个变量:DLE、R、P,按照中国市场目前现状,认为DLE外生性最强,p其次最后为r。故选取
25、顺序为DLE、P、R。图5.1 脉冲响应图5.3方差分解 表5.4 方差分解结果Variance Decomposition of DLE:PeriodS.E.DLEP10.003710100.00000.00000020.00371899.982500.01750030.00376998.893111.10688540.00392997.909522.09048150.00396696.365083.63491860.00401994.218215.78179370.00407892.060357.93964980.00412989.8151510.1848590.00418287.6054
26、512.39455100.00423185.5997514.40025110.00427683.8063816.19362120.00431682.2474817.75252130.00435180.9365819.06342140.00438179.8538420.14616150.00440678.9772421.02276160.00442678.2831821.71682170.00444277.7439622.25604180.00445477.3334522.66655190.00446477.0279322.97207200.00447176.8058323.19417210.0
27、0447676.6485523.35145220.00447976.5405123.45949230.00448276.4688723.53113240.00448376.4233623.57664250.00448476.3960023.60400260.00448576.3807123.61929270.00448576.3730623.62694280.00448676.3698923.63011290.00448676.3690623.63094300.00448676.3691923.63081310.00448676.3694723.63053320.00448676.369462
28、3.63054330.00448676.3690023.63100340.00448676.3680723.63193350.00448676.3667523.63325360.00448676.3651623.63484Variance Decomposition of P:PeriodS.E.DLEP10.5449360.25733799.7426620.9837341.37891298.6210931.4187241.20744898.7925541.8251420.82489299.1751152.1948950.59927299.4007362.5220960.45388299.54
29、61272.8070260.38586299.6141483.0507090.37289099.6271193.2558400.40512599.59488103.4259920.46978699.53021113.5649130.55340199.44660123.6765910.64929299.35071133.7649360.75050199.24950143.8336290.85127199.14873153.8860880.94810499.05190163.9253751.03814598.96186173.9541801.11948298.88052183.9748111.19
30、116998.80883193.9892071.25283598.74717203.9989591.30464098.69536214.0053421.34717398.65283224.0093541.38127898.61872234.0117561.40797098.59203244.0131121.42833898.57166254.0138271.44346398.55654264.0141791.45436298.54564274.0143511.46195298.53805284.0144571.46702898.53297294.0145601.47025498.5297530
31、4.0146901.47216798.52783314.0148561.47318898.52681324.0150541.47363598.52636334.0152741.47373998.52626344.0155041.47366298.52634354.0157341.47350998.52649364.0159531.47334998.52665附录具体数据指标国房景气指数_当月人民币对美元期末汇率地区全国全国频度月月单位-人民币/美元2005-07101.978.112005-08101.768.12005-09101.428.092005-10101.028.082005-11
32、100.698.082005-12100.618.072006-01100.768.062006-02101.058.042006-03101.468.022006-04101.618.022006-05101.878.022006-06102.9382006-07103.517.972006-08103.317.962006-09103.147.912006-10103.47.882006-11103.927.842006-12102.967.812007-01102.427.782007-02101.787.742007-03101.227.732007-04102.657.712007-
33、05103.327.652007-06103.637.622007-071047.572007-08104.487.562007-09104.997.512007-10105.747.472007-11106.597.42007-12106.457.32008-01106.117.192008-02105.557.112008-03104.727.022008-04104.0772008-05103.346.942008-06103.086.862008-07102.366.842008-08101.786.832008-09101.156.822008-1099.686.832008-119
34、8.466.832008-1296.466.832009-0195.666.842009-0294.866.842009-0394.746.842009-0494.766.832009-0595.946.832009-0696.556.832009-0798.016.832009-08100.086.832009-09101.086.832009-10102.036.832009-11102.786.832009-12103.666.832010-01104.5656.832010-02105.476.832010-03105.896.832010-04105.666.832010-05105
35、.076.832010-06105.066.782010-07104.726.782010-08104.116.812010-09103.526.692010-10103.576.672010-11103.26.672010-12101.796.592011-01102.3456.592011-02102.96.582011-03102.986.562011-04103.196.52011-05103.26.482011-06101.756.472011-07101.56.442011-08101.126.392011-09100.416.352011-10100.276.322011-119
36、9.876.352011-1298.896.32012-0198.396.312012-0297.896.292012-0396.926.292012-0495.626.282012-0594.96.342012-0694.716.322012-0794.576.332012-0894.646.342012-0994.396.342012-1094.566.32012-1195.716.292012-1295.596.292013-0196.7556.282013-0297.926.282013-0397.566.272013-0497.356.222013-0597.266.182013-0697.296.182013-0797.396.182013-0897.296.172013-0997.256.152013-1096.886.142013-1196.386.132013-1297.216.12014-0197.066.112014-0296.916.122014-0396.46.152014-0495.796.162014-0595.026.172014-0694.846.152014-0794.826.172014-0894.796.162014-0994.726.152014-1094.766.15存在问题1、在