《数值积分法稳定性分析ppt课件.ppt》由会员分享,可在线阅读,更多相关《数值积分法稳定性分析ppt课件.ppt(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、3.4 3.4 数值积分法稳定性分析数值积分法稳定性分析3.4.1 3.4.1 数值解法稳定性含义数值解法稳定性含义 考虑如下一阶系统 采用Euler法求其数值解。 设计算步长为,则Euler递推公式为 (1)当时, ,递推结果发散; (2)当时,数值解显等幅振荡趋势; (3)当 时,递推结果收敛。 10,010yyy h101110110110110nnnnnnhyyhyhyy2 . 0h2 . 0h2 . 00h1101h所谓数值解的稳定性所谓数值解的稳定性: 指在扰动(初始误差、舍入误差、截断误差等)影响下,其计算过程中的累积误差不会随计算步数的增加而无限增增长。 判断:判断: 不同的数
2、值解法对应着不同的差分递推公式。一个数值法是否稳定取决于该差分方程的特征根是否满足稳定性要差分方程的特征根是否满足稳定性要求求。3.4.2 3.4.2 稳定性分析稳定性分析 以Euler法为例说明各种数值积分方法稳定性分析方法。Euler公式有以下三种形式: (1) (1) 前差公式 (2) (2) 后差公式 (3) (3) 梯形公式 nnnhfyy111nnnhfyy112nnnnffhyy 以检验方程 为例进行稳定性讨论, 。 (1) (1) 前差公式为 要使上述差分方程稳定,必须使 当系统有实根 时,为了保证计算稳定性,要求 结论:步长 必须小于系统时间常数的两倍。yy0,jnnnnyh
3、hyyy1111 h0,2hh(2) (2) 后差公式为差分方程的特征根 结论:只要原方程稳定,那么利用后差公式获得的差分方程的特征根一定落在单位圆内,与步长无关。后差公式是恒稳定的。01111nnnnnyyhyhyy11111222hhhz(3) (3) 对于梯形公式,其差分方程特征根为 也是恒稳定的。 0122122122222,hhhhz 此思想,也适用于其他数值积分方法。 类似地可得RK法的绝对稳定域 据此可得出各类RK公式的稳定条件。 1!1! 211:2rrhrhhhG 表3.4 RK方法的稳定区域 表3.5 Adams 法的稳定域 rrG1G2G3G4G0 , 20 , 20 ,51. 20 ,78. 20 , 20 , 10 ,1160 ,1030 ,0 ,0 , 60 , 3 条件稳定算法,步长 必须满足下列不等式 其中 为由积分方法确定的常数。 相当于相当于连续系统微分方程或状态方程的特征根连续系统微分方程或状态方程的特征根或闭环系统的极点或闭环系统的极点。Mh hM