固体物理-固体比热容ppt课件.ppt

上传人:飞****2 文档编号:29971464 上传时间:2022-08-03 格式:PPT 页数:34 大小:669KB
返回 下载 相关 举报
固体物理-固体比热容ppt课件.ppt_第1页
第1页 / 共34页
固体物理-固体比热容ppt课件.ppt_第2页
第2页 / 共34页
点击查看更多>>
资源描述

《固体物理-固体比热容ppt课件.ppt》由会员分享,可在线阅读,更多相关《固体物理-固体比热容ppt课件.ppt(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Heat Capacity of Solids固体热容 在十九世纪,由实验得到在室温下固体的比热是由杜隆-珀替定律给出的:BAvKNRC33 热容是一个与温度和材料都无关的常数。其中R=NAKB,NA是阿伏伽德罗常数(6.031023 atoms /mole)KB是玻尔兹曼常数(1.3810-16尔格/开,尔格是功和能量的单位1焦耳=107尔格)。回想一下,1卡路里= 4.18焦耳= 4.18107尔格。因此,(2.90)所给出的结果6vCcal/deg mole(2.91)(2.90)固体比热的经典理论固体比热的经典理论 杜隆-珀替定律的解释是基于经典统计力学的均分定理的基础之上的,该定理假

2、设每个原子关于它的平衡位置做简谐振荡,那么一个原子的能量就为:222222222121212zyxkpppmkrmpEzyx(2.92) 在一个处于平衡状态的系统中,能量均分定理指出:TkmpBx2122 对于上式中的其他项也都适用,因此在温度T时每个原子的能量都为 E=3kBT固体比热的经典理论固体比热的经典理论1摩尔原子的能量则为RTTKNUBA33(2.93) 随后,Cv, 由(2.90)式给出。后来发现,杜隆-珀替定律只适用于足够高的温度。对于一个典型固体 Cv 的值被发现随温度的影响具有如图2.9所示的行为。vvTUC固体比热的经典理论固体比热的经典理论 由图可知,在低温时,热容量不

3、再保持为常数,而是随温度的下降很快趋向于零。固体比热的经典理论固体比热的经典理论 为了解决这一问题,爱因斯坦提出了量子热容理论。根据量子理论,各个简谐振动的能量本征值是量子化的,即jjnjnE21(n nj j= =整数)整数)Modern Theory of the Specific Heat of Solids 固体比热的现代理论固体比热的现代理论 把晶体看作一个热力学系统,在简谐近似下引入简正坐标Qi(i=1,23N)来描述振子的振动。可以认为这些振子独立的子系,每个谐振子的的统计平均能量:jjjjjjjjjjexp12expnnBBnnk TEnk TkT1 令121E jejjj 零

4、点能平均热能Modern Theory of the Specific Heat of Solids 固体比热的现代理论固体比热的现代理论jjjjjjjjjjexp12expnnnnEn 1exp2nnn jjjj)exp(1121jjn12exp()1 jjj12Enjjj其中其中1exp1TknBjj 平均声子数平均声子数在一定温度下,晶格振动的总能量为:在一定温度下,晶格振动的总能量为:01( )2exp1BEEE Tk TjjjjjHeat Capacity of Solids固体热容121E jejjj 上式对T求微商,得到晶格热容: 21/2TkTkBjBjjvBjBjeeTkkd

5、TTEdC上式分析了频率为j的振子对热容量的贡献,晶体中包含有3N个简谐振动,总能量为:31EE (T)NjjHeat Capacity of Solids固体热容 NjNjjjVdTTdC3131V)(EC总热容就为:爱因斯坦模型假设晶体中原子的振动是相互独立的, , 而且所有原子都以同一频率 0 0 振动。2/ / 20V13C 00kTkTeekTNk0 的值由实验选定,使理论与实验一致。的值由实验选定,使理论与实验一致。 不足之处:模型过于简化,得到的结果以指数形式趋于不足之处:模型过于简化,得到的结果以指数形式趋于0,与实验中以与实验中以T3 变化不符。变化不符。 Einstein模

6、型趋于零模型趋于零 的速度太快!的速度太快! 该模型的成功之处:证明该模型的成功之处:证明0C , 0VTEinstein模型模型由固体比热的现代理论可知: 经典的能量均分定理可以很好地解释室温下晶格热容的实验结果。经典的能量均分定理可以很好地解释室温下晶格热容的实验结果。困难:低温下晶格热容的实验值明显偏小,且当困难:低温下晶格热容的实验值明显偏小,且当T0时,时, CV 0,经典的能量均分定理无法解释。,经典的能量均分定理无法解释。2. Einstein模型模型在一定温度下,由在一定温度下,由N个原子组成的晶体的总振动能为:个原子组成的晶体的总振动能为: 003exp1BE TNk T 假

7、设:晶体中各原子的振动相互独立,且所有原子都假设:晶体中各原子的振动相互独立,且所有原子都 以同一频率以同一频率 0振动。振动。0.const即:即:02020exp3exp1BVBBBk TECNkTk Tk T定义定义 Einstein温度:温度:0EBk 02020exp3exp1BVBBBk TCNkk Tk Tv 高温下:高温下:T E 即即0Bk T2020013expexp22VBBBBCNkk Tk Tk T20200131122BBBBNkk Tk Tk T 3BNk02020exp3exp1BVBBBk TCNkk Tk Tv 在低温下:在低温下:T D,即,即0DDxT0

8、2393DxVBBDTCNkx dxNk4032DT91xVBxx e dxCNke403291xBxDTx edxNke40329111122DxVBDTx dxCNkxx v 在低温下:在低温下:T D,即,即 DDxT 利用利用Taylor展开式:展开式:23()(1)()(1)(2)11()2!3!nnnnnnn 40329123xxxVBDTCNkx eeedx40319nxBnDTNkxnedx利用积分公式:利用积分公式:0111!mammmmedaa40319nxBnDTNknx edx 3514!9VBnDTCNknn433125BVDNkTCT 这表明,这表明,Debye模型

9、可以很好地解释在很低温度下晶格热容模型可以很好地解释在很低温度下晶格热容CV T3的实验结果。的实验结果。 由此可见,由此可见,用用Debye模型来解释晶格热容的实验结果是相当成功的,尤模型来解释晶格热容的实验结果是相当成功的,尤其是在低温下,温度越低,其是在低温下,温度越低,Debye近似就越好。近似就越好。441190nn几种材料晶格热容量理论值与实验值的比较几种材料晶格热容量理论值与实验值的比较 Tqyqx mqmqT 在非常低的温度下,由于短波声子的能量太高,不会被热激发,而被在非常低的温度下,由于短波声子的能量太高,不会被热激发,而被“冷冻冷冻”下来。所以下来。所以 的声子对热容几乎

10、没有贡献;只有那些的声子对热容几乎没有贡献;只有那些 的长波声子才会被热激发,对热容量有贡献。的长波声子才会被热激发,对热容量有贡献。Bk TBk T在在q空间中,被热激发的声子所占的体积比约为空间中,被热激发的声子所占的体积比约为3Tmqq由于热激发,系统所获得的能量为:由于热激发,系统所获得的能量为:3( )3BDTE TNk T3312VBDETCNkTT3Tm3DT CV T3必须在很低的温度下才成立,大约要低到必须在很低的温度下才成立,大约要低到T D/50,即约,即约10 K以下才能观察到以下才能观察到CV随随T3变化。变化。 Debye模型在解释晶格热容的实验结果方面已经证明是相

11、当成功模型在解释晶格热容的实验结果方面已经证明是相当成功的,特别是在低温下,的,特别是在低温下, Debye理论是严格成立的。但是,需要指出的理论是严格成立的。但是,需要指出的是是Debye模型仍然只是一个近似的理论,仍有它的局限性,并不是一个模型仍然只是一个近似的理论,仍有它的局限性,并不是一个严格的理论。严格的理论。In的的Debye温度温度 D随温度的变化随温度的变化density of states模式密度(态密度?)g()确定振动谱的实验方法 晶格振动的q关系,称格波的色散关系,也称晶格振动谱。原则上声子对X-ray、光子和中子的散射可以通过入射波的非弹性散射反映,测量散射束可以得到声子信息。 固体物理学书上介绍的是中子的非弹性散射,也是最重要的实验方法,除此之外还有X射线散射,光的散射等。中子的非弹性散射: 为什么说中子的非弹性散射实验较好? (1)慢中子的能量约在0.020.03eV,而声子能量约为0.01eV,它们在同一数量级。 (2)中子的德布罗意波长约为23,与晶格常数同数量级。光散射只能测量少数振动模,所以也不是很常用。可见光的非弹性散射: (1)光与声学声子的散射称布里渊区散射。 (2)光与光学声子的散射称拉曼散射。 光散射与中子散射相比,其可测量范围太小。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁