泰勒公式及其应用 (毕业论文).doc

上传人:豆**** 文档编号:29957246 上传时间:2022-08-02 格式:DOC 页数:11 大小:515.50KB
返回 下载 相关 举报
泰勒公式及其应用 (毕业论文).doc_第1页
第1页 / 共11页
泰勒公式及其应用 (毕业论文).doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《泰勒公式及其应用 (毕业论文).doc》由会员分享,可在线阅读,更多相关《泰勒公式及其应用 (毕业论文).doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 毕业论文题 目 泰勒公式及其应用 学生姓名 学号 所在院(系) 数 学 系 专业班级 数学与应用数学专业2006级4班 指导教师 完成地点 2010年 5月 30日泰勒公式及其应用 摘 要 文章简要介绍了泰勒公式及其几个常见函数的展开式,针对泰勒公式的应用讨论了九个问题,即应用泰勒公式求极限,证明不等式,判断级数的敛散性,证明根的唯一存在性,判断函数的极值,求初等函数的幂级数展开式,进行近似计算,求高阶导数在某些点的数值,求行列式的值.关键词 泰勒公式;极限;不等式;敛散性;根的唯一存在性;极值;展开式;近似计算;行列式. 引言泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表

2、示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明. 预备知识定义2.1 若函数在存在阶导数,则有 (1)这里为佩亚诺型余项,称(1)f在点的泰勒公式.当=0时,(1)式变成,称此式为(带有佩亚诺余项的)麦克劳林公式.定义2.2 若函数 在某邻域内为存在直至 阶的连续导数,则, (2)这里为拉格朗日余项,其中在与之间,称(2)为在的泰勒公式.当=0

3、时,(2)式变成称此式为(带有拉格朗日余项的)麦克劳林公式.常见函数的展开式:.定理2.1(介值定理) 设函数 在闭区间 上连续,且 ,若为介于 与之间的任何实数,则至少存在一点,使得.3 泰勒公式的应用3.1 利用泰勒公式求极限为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限,就能简捷地求出.例3.1 求极限.分析:此为型极限,若用罗比达法求解,则很麻烦,这时可将和分别用泰勒展开式代替,则可简化此比式.解 由,得,于是.3.2 利用泰勒公式证明不等式当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使

4、证明方便简捷.例3.2 当时,证明.证明 取,则带入泰勒公式,其中=3,得,其中.故当时,.3.3 利用泰勒公式判断级数的敛散性当级数的通项表达式是由不同类型函数式构成的繁难形式时,往往利用泰勒公式将级数通项简化成统一形式,以便利用判敛准则.例3.3 讨论级数的敛散性.分析:直接根据通项去判断该级数是正向级数还是非正向级数比较困难,因而也就无法恰当选择判敛方法,注意到,若将其泰勒展开为的幂的形式,开二次方后恰与相呼应,会使判敛容易进行.解 因为,所以,所以故该级数是正向级数.又因为,所以.因为收敛,所以由正向级数比较判别法知原级数收敛.3.4 利用泰勒公式证明根的唯一存在性例3.4 设f(x)

5、在上二阶可导,且,对, 证明: 在内存在唯一实根.分析:这里f(x)是抽象函数,直接讨论的根有困难,由题设f(x)在上二阶可导且,可考虑将f(x)在a点展开一阶泰勒公式,然后设法应用戒指定理证明.证明 因为,所以单调减少,又,因此xa时,故f(x)在上严格单调减少.在a点展开一阶泰勒公式有由题设,于是有,从而必存在,使得,又因为,在上应用连续函数的介值定理,存在,使,由f(x)的严格单调性知唯一,因此方程在内存在唯一实根.3.5 利用泰勒公式判断函数的极值例3.5 (极值的第二充分条件)设在的某邻域内一阶可导,在处二阶可导,且,.(i)若,则在取得极大值.(ii) 若,则在取得极小值.证明 由

6、条件,可得f在处的二阶泰勒公式.由于,因此.(*)又因,故存在正数,当时,与同号.所以,当时,(*)式取负值,从而对任意有,即在取得极大值.同样对,可得在取得极小值.3.6 利用泰勒公式求初等函数的幂级数展开式利用基本初等函数的幂级数展开式,通过加减乘等运算进而可以求得一些较复杂的初等函数的幂级数展开式.例3.6 求的幂级数展开式.解 利用泰勒公式3.7 利用泰勒公式进行近似计算利用泰勒公式可以得到函数的近似计算式和一些数值的近似计算,利用麦克劳林展开得到函数的近似计算式为,其误差是余项.例3.7 计算Ln1.2的值,使误差不超过0.0001解 先写出f(x)=Ln(1+x)带拉格朗日型余项的

7、麦克劳林展开式:,其中(在0与x之间).令,要使则取即可.因此当要求的算式不能得出它的准确值时,即只能求出其近似值,这时泰勒公式是解决这种问题的最好方法.例3.8 求的近似值,精确到.解 因为中的被积函数是不可积的(即不能用初级函数表达),现用泰勒公式的方法求的近似值.在的展开式中以代替 x得逐项积分,得上式右端为一个收敛的交错级数,由其余项的估计式知3.8 利用泰勒公式求高阶导数在某些点的数值如果f(x)泰勒公式已知,其通项中的加项的系数正是,从而可反过来求高阶导数数值,而不必再依次求导.例3.9 求函数在x=1处的高阶导数.解 设x=u+1,则,在u=0的泰勒公式为,从而,而g(u)中的泰

8、勒展开式中含的项应为,从g(u)的展开式知的项为,因此,.3.9 利用泰勒公式求行列式的值若一个行列式可看做x的函数(一般是x的n次多项式),记作f(x),按泰勒公式在某处展开,用这一方法可求得一些行列式的值.例 3.10 求n阶行列式 D= (1)解 记,按泰勒公式在z处展开:, (2)易知 (3)由(3)得,.根据行列式求导的规则,有于是在处的各阶导数为, 把以上各导数代入(2)式中,有若,有,若,有.4 总结本文主要介绍了泰勒公式以及它的九个应用,使我们对泰勒公式有了更深一层的理解,怎样应用泰勒公式解题有了更深一层的认识.,只要在解题训练中注意分析,研究题设条件及其形式特点,并把握上述处

9、理规则,就能比较好地掌握利用泰勒公式解题的技巧.参考文献1陈传章 金福林:数学分析(下)北京:高等教育出版社,1986.2张自兰 崔福荫:高等数学证题方法陕西:陕西科学出版社,1985.3王向东:数学分析的概念和方法上海:上海科学技术出版社,1989.4同济大学数学教研室主编.高等数学【M】.北京:人民教育出版社,1999.5刘玉琏 傅沛仁:数学分析讲义【M】.北京:人民教育出版社,2000.6华东师范大学数学系,数学分析(第二版)【M】高等教育出版社,1911.7张立民Visual Foxpro5.x中文版应用技术手册【M】大连:大连理工大学出版社,19978中文版Visual Foxpro

10、3.0编程指南【M】西安:西安交通大学出版社,19979Visual Basic程序设计【M】中央广播电视大学出版社,2001Some Equivalent Definitions and Applications of Convex Function AbstractThis paper briefly introduces the Taylor formula and the expansion of several common functions, for the Taylor formula discussed nine issues that limit application o

11、f Taylors formula of seeking to prove that inequality, determine convergence and divergence of series, that the root The only existence, determine the function of the extreme value, find the primary function of the power series expansion, to approximate calculation, find the higher derivative value at some point, find the value of determinant. Key wordsTaylor formula; limit; inequality; Convergence; root of the only existence; extreme; expansion; approximate calculation; determinant.第10页 共10页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁