《极限的一个定理及其应用-外文翻译.docx》由会员分享,可在线阅读,更多相关《极限的一个定理及其应用-外文翻译.docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、石家庄经济学院本科毕业设计(论文)外文翻译本科生毕业设计(论文)外文翻译学生姓名: 张朋宇学 号: 408114010113 专业班级: 数学与应用数学指导教师: 梁海燕老师 2014 年 02月 10日A Discussion on a Limit Theorem and Its Application Abstract: This paper proposes that a limit theoremcan help to solve a specific limit problemof sum formula and that some limit of product formula
2、can also be solved by exploiting the feature of logarithm function.Keywords: limit theorem; sumformula; product formulaIncalculus,we will usually solve a specific limit problem of sum formulaBut this sum formula cant sum directly, and it cant change into some kinds of functions integral sum. So it i
3、s hard to work out its limit , for solve this problem. This papers proposes is that a limit theorem can help to solve this limit problem of sum formula and that some limit of product formula can also be solved by logarithm function. Theorem1 Let (a) f be differentiable at x=0 and f (0) =0,(b) g be i
4、ntegrable for xa, b.We haveProof By the (a), for every thereis a 0 such that implies .Then by the (b), there exists a real number M0 such that | g(x)| M for xa,b and there is a 0 such thatTimpliesLet ,so whenT0 and Let f (x) =x then theorem 1 has becomeThis is definition of definite integral , and b
5、y logarithm function we getCorollary2 If f be differentiable at x=0 and f (0) =1 and g be integrable for x into a,b then we haveIn practical is usually divide 0,1 into n parts, and choose (k=1,2, , n).Corollary3Let f be differentiable at x=0 and g be integrable for x into 0,1 , then we have(a) If f
6、(0) =0, we have(b)(c) If f(0) =1, we haveProof By that theorem1 and logarithm function, we getExample1Evaluate each of the following:Solution(a) Rewrite the sum in the equivalent formSo that by theorem1, (b)Rewrite the sum in the equivalent formSo that by theorem1,So that by theorem1,(d)Let f(x) =si
7、nax and g(x) =x. ThenSo that by theorem 1,So that by theorem 1,Example2Evaluate the following limits:Solution(a) We can change the product intoan equivalent from by writingLet f(x) = 1+x and g(x) =x. ThenSo that by corollary 2,(b) Rewrite the product in the equivalent fromSo that by corollary 2,Exam
8、ple3Evaluateof thefollowinglimitSo1 王寿生等.微积分解题方法与技巧M.西安:西北工业大学出版社,1990.2 林源渠等.数学分析习题集M.北京:北京大学出版社,1993.3 美波利亚等.数学分析中的问题与定理M.张奠宙等译.上海:上海科技出版社,1985.4 Loren C Larson. Problem-Solving Through Problems M. Printed and bound by R. R. Donnelley &Sons, Harrisonburg, Virginia. 175 Fifth Avenue, NewYork, NewYo
9、rk10010, U. S. A. Springer Verlag NewYork Inc. , 1983.极限的一个定理及其应用摘要:这篇文章给出了一个能较好地解决一类特殊“和式”的极限问题的极限定理。同时,利用对数函数的特性,又能够用来解决一些“积式”的极限。关键词:极限,和式,积式在微积分中,我们经常使用一些特殊的极限来解决和式问题:但是这个式子是不能直接相加的,也不能转换成函数的积分和的形式。所以很难求出它的极限,为了解决这个问题。这篇文章给出了一个极限定理,能较好地解决这一类特殊“和式”的极限问题。同时,利用对数函数又能够用来解决一些“积式”的极限。定理1. 令()在时可微且,()在
10、区间内可积,则其中 :, , 证明:由条件()可知,对任意的存在,当时有由条件()可知,这里有存在一个实数,且在时,存在, 当时有令 ,当时有(因为)另外还有我们注意到到,先前的变量是以为条件的,在的情况中,有我们可以得到:当时当时令,则定理1可以变为这是一个定积分的定义,然后通过对数函数我们可以得到推论2.如果在时可微且,在区间上可积,则有:在实际情况下,我们经常将n等分,取推论3 令在处可微,在上对可积,我们有(a) 如果,我们有(b) 如果,我们有证明:由定理1和对数函数,我们可得例1:求下列各式的值解:(a)以等价形式进行和的重置:令 且 则且根据定理1得: (b)以等价形式进行和的重
11、置:令 且 则则根据定理1得(c)令=且则 且 则根据定理1得(d)令且则且则根据定理1得(e)令且则且根据定理1得例2:求下列各式的极限解:(a)我们可以以等价形式写出积的变换:令且得 且 则根据推论2得 (b)以等价形式写出积的重置令且,则则根据推论2得例3求下式极限解:令,将平均分成份,选择点则所以, 参考文献:1王寿生等. 微积分解题方法与技巧M . 西安:西北工业大学出版社,1990.2林源渠等. 数学分析习题集M . 北京:北京大学出版社,1993.3美波利亚等. 数学分析中的问题与定理M . 张奠宙等译. 上海:上海科技出版社,1985.4Loren C Larson. Problem2Solving Through Problems M . Printed and bound by R. R. Donnelley & Sons ,Harrisonburg , Virginia. 175 Fif th Avenue , New York , New York 10010 , U. S. A. Springer Verlag New York Inc. , 1983. 17