《在伸缩缝处设置粘滞性阻尼器来进行桥梁的抗震保护-外文翻译.doc》由会员分享,可在线阅读,更多相关《在伸缩缝处设置粘滞性阻尼器来进行桥梁的抗震保护-外文翻译.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、在伸缩缝处设置粘滞性阻尼器来进行桥梁的抗震保护玛丽亚.冯,杰米.金,方信筱冢,瑞帕.比拉辛格摘要:本文介绍了在公路桥梁伸缩缝处使用粘弹性阻尼器来防止上层建筑夹板在严重地震之中脱落或相互摩擦的研究结果。在开尔文和麦克斯韦模型中,对弹性弹簧和线性粘滞阻尼器的串联和并联分别进行了分析。一个使用双线性滞回模型对桥梁子结构关节的二位有限元分析在一座有一两个伸缩缝的例桥上进行了试验,结果表明阻尼器能够有效抑制相对位移伸缩缝,并且不会为子结构引入显著增加延性的需求。结果还显示, 开尔文和麦克斯韦模型的弹簧组件对阻尼器的组件的影响甚微。该研究明确表明,使用线性粘滞阻尼器对通常来自桥梁伸缩缝的地震的问题提供了一
2、种实用的解决方案。介绍 过去的地震,特别是1994年的北岭地震表明,加州(巴尔克1994,交通局1994)现有的1960葡萄酒桥和其他桥梁在伸缩缝钢铁抑制设备方面还有很大提升空间。这些设备都是加州交通局在1971年沙费尔南地震后为了抗震加固所安装的,这表明多达1250座桥梁伸缩缝很脆弱,在一个严重的地震(赛迪集团等。1992年,1993年)超出了它们的可用座位宽度的地震响应时,会很容易崩溃。由当前的设计指导原则,这些钢铁重铸设备(电缆或棒)是专为他们的弹性反应; 他们没有消除大量的地震能量,因此可能在一场严重的地震中引起要么电缆/棒或隔膜断裂,要么墙壁上的桥的两端有线/棒被击穿。使用耗能设置来
3、限制伸缩缝的想法被提出。在他们以往的研究中,努力证明了耗能设备在原则上是有效的,为了证实这一点,对曾在北岭地震中遭受过局部坍塌的加文峡谷交叉点使用线性桥模型(克洛斯克 等等 1995;冯1997)进行了分析。在这项研究中,两个代表典型加州交通局建造的带有伸缩缝的桥的通用模型被认为是对线性和非线性响应分析。SAP90有限元计算机代码(计算机测试版和结构1995年)广泛地被用嵌入塑料铰链的桥柱二维响应分析(纵向和垂直方向)。粘弹性阻尼器对于减少伸缩缝桥面之间的相对位移的的成效是本研究的主要兴趣。同样重要的是,要确定相对运动是一个关闭或打开的联合。此外,还要关注当受到地震作用时,安装在伸缩缝的阻尼器
4、是否会在桥梁主要子结构产生附加弯矩作用。输入地震运动四个地震地面运动,每个都有两个组件,被用作输入的2 D仿真分析。他们都被记录在埃尔森特罗地震(NS组件,UD组件,1940),塔夫特地震(N21E组件,UD组件,林肯学校隧道,1952),洛马普列塔(EW组件,UD-组件敦巴顿桥,1989),以及在美国的北岭地震(NS组件,UD组件,纽荷尔,1994)。原始地面的水平组件加速度呈线性扩展,这样他们的峰值加速度(PGAs)是0.70 g,按照由交通局在抗震设计谱的使用的最大PGA。这些地面运动的垂直组件相应下滑。这些被选出的运动代表不同的持续时间和频率成分各种地震运动。实例桥梁这是典型的有超过4
5、跨度的伸缩接头位于接近拐点(即,1/4到1/5的跨度) 的加州公路桥梁。这座桥桥面由箱式梁与或增强或者预应力混凝土组成。本研究考虑了两座典型的有伸缩缝的交通局桥梁:l 模型桥1:跨度为5,1个伸缩缝,柱高度等于19.83米(65英尺)。l 模型桥2:跨度为5,2个伸缩缝,柱高度等于19.83米(65英尺)。桥梁模型的几何形状和边界条件如图1所示。桥梁模型的材料和截面特性如表1所示。这些桥梁在每个由伸缩缝分割的独立框架中都有周期范围为0.51.0秒的主导横向自由振动模式。大桥的建模使用SAP90计算机代码的有限元分析的测试版本。简化的2 D线性模型首先被建立,紧随其后的是考虑在桥柱中用塑料铰成型
6、的非线性模式。伸缩缝的相对运动被假定为在垂直方向上有所限制,但在水平和旋转方向上是自由的。下部结构柱被假定为在其底座固定,桥墩被建模为辊支持。本研究选择了阻尼器的开尔文和麦克斯韦型线性粘弹性阻尼器,其中包括了并联弹性弹簧的粘性阻尼器,前者和后者是串联的。然而,从热膨胀的角度看,麦克斯韦类型是原则上显而易见的选择。图1 实例桥梁海拔表1 示例桥梁的材料和横向属性例桥(1)结构零件(2)横截面积米2 (英尺2)(3)转动惯量米4 (英尺4)(4)质量密度Mg/m3 (pcf)(5)系数kPa (ksi)(6)TY1HTY2H桥梁桥柱6.936 (74.7)4.670 (50.3)4.787 (55
7、4.8)1.735 (201.1)2.32 (145)2.32 (145)2.779 3 107 (4,031)2.779 3 107 (4,031)表2 自然频率和主导模式的群体性因素(1)自然频率(赫兹)(2)周期(秒)(3)群众性因素(4)TY1HTY2H桥梁桥柱6.936 (74.7)4.670 (50.3)4.787 (554.8)1.735 (201.1)(a) 例桥 TY1H耦合结构左框架右框架1.1171.2251.1211.3040.8950.8160.8920.76741.252.752.61.6(b) 例桥 TY2H耦合结构左框架中框架右框架0.9981.3720.994
8、1.5620.9941.0120.7291.0060.6401.00655.737.830.932.030.9线性分析 两种类型的阻尼器被用作分析:弹簧和粘滞阻尼器并联而成的开尔文类型,弹簧和粘滞阻尼器串联组成的麦克斯韦类型。21组不同的弹簧常数k和阻尼系数c在c0K350.4千牛/厘米(0K200基普/)和0C350.4千牛/厘米的范围内进行了研究。到目前为止,231个不同的迷你用例已经测试了每个模型桥梁。表2所示的是无伸缩缝安装阻尼器的桥梁模型的水平运动的固有频率,周期,和主导模式的群众性因素。这些桥梁的每个模型都会因为伸缩缝的垂直相对位移所施加的约束,而作为一个单独的结构被激发。表2还显
9、示每一帧由伸缩缝分离和在其两端的两个辊所支持的桥梁的固有频率和周期。表3 关节处没有阻尼器的相对位移峰值例桥(1)El森特罗输入卡夫输入洛玛谱瑞塔输入北岭输入线性非线性线性非线性线性非线性线性非线性TY1HTY2H8.20(8.13)11.93(11.38)2.85(3.17)8.24(8.12)8.27(8.36)11.35(1068)3.67(3.29)8.27(8.88)5.87(5.37)18.89(1794)7.09(7.45)14.06(15.22)6.02(6.55)20.89(20.22)6.02(6.60)15.78(12.14)a1英寸=2.54厘米b规模运动的PGA是0.
10、70克注意:括号里的值是最大的闭包而其他是最大的开放。没有在伸缩缝处安装阻尼器的情况下,首先执行了使用SAP90的数字模拟。在上述地震输入下所产生的伸缩缝处的相对位移相应峰值如表3所示。由于几何对称性,在桥梁TY2H左右关节处的相对位移是完全相同的。相对位移根据是以下假设计算出的:相邻两层甲板的初始相对位置是这样的,他们可以容纳所计算的相对位移而不包括从底座的冲击或下降。开尔文型阻尼器被安装在伸缩缝,桥梁的反应是再次在相同的地震地面运动情况下被模拟。对于桥TY1H,在伸缩缝安装开尔文型阻尼器的相对位移的标准化峰值如图2所示。同一桥梁没有安装阻尼器的被标准化的峰值位移如表2所示。最后,对在伸缩缝
11、安装了麦克斯韦型阻尼器的桥梁的地震响应进行了模拟。对于同样的桥TY1H,在同一标准下的伸缩缝处的相对位移峰值如图3所示。开尔文与麦克斯韦模型中,是弹性的弹簧组件有效抑制了相对运动峰值,而不是所谓的粘性阻尼器组件,尤其是当阻尼系数大的时候。这表明,相当大的值C的线性粘滞阻尼器,而不是粘弹性阻尼器的开尔文和麦克斯韦类型,可以有效地用于抑制相对位移伸缩缝。实际上,不论桥梁所受的地震是怎样,基于k=0的开尔文模型和基于一个大的k(比如6000千磅/英尺)的麦克斯韦模型的相对位移曲线几乎是相同的。同时,在这两种情况下, 最大开放的规范化值和最大闭包的几乎相同,独立于地震地面运动,图2和3所示的是它们的区
12、别。除了在关节的相对位移,对在每一桥柱底部的弯矩也进行了计算。图4和图5分别为TY1H和TY2H阻尼系数值不同的功能绘制了被My = 32.54 MN/m (24,000 千磅-英尺)标准化的峰值。此时,阻尼器是没有弹簧组件的粘滞阻尼器。在图4和5,阻尼系数为0的点代表伸缩缝没有安装阻尼器。与没有安装阻尼器的桥柱相比,安装了阻尼器的桥柱的弯矩峰值会根据输入的地面震动略有增加或降低。此外,弯矩峰值的或多或少和阻尼系数的功能保持一致,特别是阻尼系数越大。因此,它表明,在伸缩缝安装了阻尼器不会在桥梁子结构处产生任何额外的显著地震力。图2. 开尔文阻尼器的标准化相对位移峰值(100千磅/英尺 = 17
13、.52 MN/m)图2. 麦克斯韦阻尼器的标准化相对位移峰值(100千磅/英尺 = 17.52 MN/m)图4 桥TY1H的桥柱弯矩峰值图5 桥TY2H的桥柱弯矩峰值非线性分析上述的线性分析结果主要是学术的,从某种意思上说,是主要成员的力量。特别是桥柱的弯矩,远远超过了产量距;在已经的4个地震中,桥梁TY1H的最大弯矩是产量距的5倍,而桥梁TY2H则是7倍。如果这4个大规模地震下的相应数量除以一个因子Mmax/My,则在由同一因子改变规模的地震下代表合法的线性响应值(最大弯矩等于My)。在这里Mmax是4个桥柱(截面相同)中的最大弯矩。一个非线性分析是必要的,以确定阻尼器不仅在相对位移伸缩缝的
14、,但也在成员力量上的影响,考虑到桥梁成员特别是桥柱的非线性行为。一个相对简单的模型,建立了非线性动态分析,它抓住了非线性的本质。这似乎很适合在面对各种类型的近似、随机性和不确定性参与具体的输入地面运动和身体特征结构的反应,尤其是在非线性区间。图6(a)描述了桥柱本研究中唯一被认为表现出非线性行为的成员所用的模型,桥柱被建模成一个长度为2He、两端有弹性区域(普里斯特利等,1996年)的弹性柱。从地面到顶部的列的总长度为H= 2(HE1 Lp)。塑性区可以进一步逼近为一种非线性的旋转弹簧组成的一个长度的Lp刚性元素,如图所示6(b)。图6(c)所示的用于在此研究中桥梁TY1H和TY2H旋转弹簧的
15、弯矩 - 转角关系,构建了用于交通局桥柱的延性计划COLx的从塑料长度LP和弯矩 - 曲率关系。与弯矩 - 转角关系相关的具体值在Lp = 0.92 m (3.075 ft),产量旋转UY=1.70231023 RAD和非线性弹簧刚度K =1.9143104百万/米/转(1.4123 107千磅/转)时取得。图6 桥柱的非线性模型图7 桥TY1H的相对位移峰值图8 桥TY2H的相对位移峰值SAP90被用来进行非线性时程分析。使用不同阻尼系数的阻尼器的膨胀节点的相对位移峰值如图7和图8所示。为了便于比较,上一节所述的线性分析也在这些图中绘制出来了。阻尼系数为0的点代表无阻尼器的伸缩缝的位移峰值,
16、他们的值也在表3中列出了。比较表明,粘滞阻尼器能够显著有效地减少节点的相对位移,不论是线性分析或非线性分析。当阻尼系数值在52.6千牛/厘米(30千磅/英尺。)范围内时,明显有利于地减少相对位移。这里的非线性,尤其削弱相对位移的程度,甚至当阻尼系数小于这些值的相对位移的程度,特别是在埃尔森特罗和塔夫特地震下的TY1H桥。当考虑非线性时,地震地面运动的特点,更显著地影响相对位移。图9 TY1H桥柱的延性需求图10 TY1H桥柱的延性需求最后,TY1H和TY2H在不同地震下的大桥桥柱的延性需求如图9和10所示。延性需求被定义为桥柱基部的塑料铰链旋转u和非线性弹簧的产量旋转的比值。对于桥梁TY1H,
17、如图9,延性要求在考虑阻尼系数值范围内差不多是常数,最大的延性需求和没有保护阻尼器的洛玛.谱瑞塔地震时的4列有关联。因此,对于这座所有桥柱有着相同截面的桥,在伸缩缝安装调节阻尼器不对桥柱响应产生负面影响。对桥TY2H如图10所示,可以得出相同的结论,尽管在小的阻尼系数时,延性需求不是一个常数。最大的延性需求出现北岭地震中没有安装阻尼器的列1和4。图9和图10表明,阻尼系数的值在约52.6千牛/厘米(30 千磅/英尺。)范围内,和图7图8联系起来,从延性需求的角度来看,也是合理的。结论 本文作者强烈建议在桥梁伸缩缝处使用耗能系统来减少大地震下的相对位移。在本研究中,使用了两座例桥和四种特性不同的
18、地面运动来对两种不同类型的粘滞阻尼器进行了线性和非线性分析,得出了以下结论,尽管还需要对更多的桥做更深入的研究。l 粘滞阻尼器组件的粘弹性阻尼器是显着有效地减少在桥梁伸缩缝的相对位移,而弹性的弹簧组件不如粘滞阻尼器的有效。因此,建议在伸缩缝使用粘滞阻尼器,而不是粘弹性阻尼器。这与粘滞阻尼器,它可以慢慢吸收位移热e的事实是一致的。l 在伸缩缝增加粘滞阻尼器,既不会增加桥柱的弯矩也不会增加延性需求。这表明对现有的窄伸缩缝底座的桥梁使用粘滞阻尼器来抗震加固是非常有益的。致谢感谢支持本项研究的由国家地震研究中心主持下的联邦公路管理局(合同编号DTFH61-92-C-00106)和国家自然科学基金(批准
19、号:CMS-9501796)。附录参考布克尔, I., (1994). “一月加州北岭地震17, 1994: 公路桥梁的性能.”技术共和国,NCEER-94-0008,全国地震研究中心, 纽约州立大学布法罗分校,布法罗,N.Y。加州运输部 (1994)。“北岭地震后的调查报告” 加州运输部,建筑部。冯,M. Q.,陈,W. (1995),“桥梁防脱落阻尼器。”全国科学桥梁公路会议。克洛斯克,J. T.,帝塔提斯,G.,筱冢健次郎,M.,(1995)。”加文峡谷交叉点:地震作用下的失效分析和使用弹簧 - 阻尼系统改造建议。”全国科学桥梁公路会议。普利斯特列,M. J. N.,塞波尔;F.,卡尔文
20、,G. M. (1996). 桥梁的抗震设计和改造。威利,纽约。塞迪,M.,马瑞卡迪斯,E.,阿卜杜勒-贾法尔,S.,冯,S.,康奈博士。(1993)。“地震期间桥铰抑制剂的性能分析和设计”技术共和国. No. CCEER93-6, 土木工程地震研究中心。塞迪,M.,马瑞卡迪斯,E.,冯, S. (1992)。“目前交通局抗震限位设计方法的评价。”技术共和国No. CCEER92-8, 技术共和国。土木工程地震研究中心。筱冢健次郎,M.,金,J.-M.,普瑞辛格, R. (1997)。“在桥梁伸缩缝使用粘弹性阻尼器抑制桥梁的地震振动。” 全国科学桥梁公路会议, 487498。COLx用户手册,
21、桥柱延性方案. (1993). 加州运输部,建筑部。Viscoelastic Dampers At Expansion Joints For Seismic Protection Of BridgeBy Maria Q. Feng,1 Jae-Min Kim,2 Masanobu Shinozuka,3 and Rupa Purasinghe4ABSTRACT: This paper presents the result of a study on the use of viscoelastic dampers at expansion joints of highway bridges f
22、or preventing superstructure decks from falling off the seats and/or from colliding with each other in the event of a severe earthquake. The Kelvin and Maxell models, consisting of an elastic spring and a linear viscous damper combined in parallel and in series, respectively, are considered for anal
23、ysis. A 2D finite element analysis using bilinear hysteretic models for bridge substructures joints was performed on example bridges constructed with one or two expansion joints. It was demonstrated that the damper is effective in suppressing the relative displacements at the expansion joints withou
24、t introducing a significant increase in ductility demands for the substructures. The result also showed that the spring component of the Kelvin and Maxwell models has little effect on the performance of the damper component. This study clearly indicated that the use of linear viscous dampers offers
25、a practical solution to the seismic problem that often arises from bridges with expansion joints.INTRODUCTIONPast earthquakes, particularly the 1994 Northridge earthquake, suggested that there is some room for improvement with respect to the steel restraining devices at expansion joints of existing
26、1960 vintage and other bridges in California (Buckle 1994; Caltrans 1994). These devices were installed by the California Department of Transportation (Caltrans) for seismic retrofit after the 1971 Sand Fernando earthquake, which indicated that as many as 1,250 bridges having vulnerable expansion jo
27、ints would be susceptible to collapse due to seismic response beyond their available seat widths in the event of a severe earthquake (Saidi et al. 1992, 1993). By the current design guideline, these steel retraining devices (cables or rods) are designed for their elastic response; they do not dissip
28、ate any significant amount of seismic energy and are thus likely to cause either the cables/rods to break or the bridge diaphragm walls at the two ends of the cable/rods to suffer a punch-through action during a severe earthquake.Use of energy dissipation devices as restrainers at the expansion join
29、ts was proposed by the writers. In their previous studies, an effort was made to demonstrate that energy dissipation devices are, in principle, effective, and for the demonstration,only the Gavin Canyon Undercrossing, which suffered partial collapse during the Northridge earthquake, was analyzed usi
30、ng a linear bridge model (Klosek et al. 1995; Feng 1997). In this study, two general models representing typical Caltrans bridges built with expansion joints were considered for both linear and nonlinear response analysis. The beta version of the SAP90 finite-element computer code (Computersand Stru
31、ctures 1995) was used for the extensive 2D (longitudinal and vertical directions) response analysis of the bridges with potential plastic hinges formed in their columns. The effectiveness of the viscoelastic dampers in reducing the relative displacement between bridge decks at an expansion joint is
32、a primary interest of this study. It is also important to find out whether the relative motion is a closure or opening of the joint. Furthermore, there is a concern as to whether dampers installed at the expansion joints might produce additional bending moments of significance in the bridge substruc
33、tures when subjected to seismic excitations. INPUT GROUND MOTIONS Four seismic ground motions, each with two components, were used as inputs for the 2D simulation analysis. They were recorded during the El Centro earthquake (NS-component, UD-component, 1940), the Taft earthquake (N21E-component, UD-
34、component, Lincoln School Tunnel, 1952), the Loma Prieta (EW-component, UD-component, Dumbarton Bridge, 1989), and the Northridge earthquake (NS-component, UDcomponent, Newhall, 1994). The horizontal components of the original ground accelerations were linearly scaled so that their peak ground accel
35、erations (PGAs) are 0.70g in accordance with the maximum PGA in the seismic design spectra used by Caltrans. The vertical components of these ground motions were scaled accordingly. These selected motions represent a variety of earthquakes with different durations and frequency components. EXAMPLE B
36、RIDGES It is typical of California highway bridges with more than four spans to have expansion joints located nearly at inflection points (i.e., 1/4 to 1/5 of spans). The bridge decks consist of box-type girders with either reinforced or prestressed concrete.Two typical Caltrans bridges with expansi
37、on joints were considered for this study: Model TY1H: a five-span bridge with one expansion joint and equal column height of 19.83 m (65 ft) Model TY2H: a five-span bridge with two expansion joints and equal column height of 19.83 m (65 ft)The geometry and boundary conditions of these bridge models
38、are shown in Fig. 1 The material and cross-sectional properties of the models are listed in Table 1. These bridges have dominant horizontal free vibration modes with periods ranging from 0.5 to 1.0 s in each isolated frame separated by the expansion joints.The bridges were modeled using the beta ver
39、sion of the SAP90 computer code for finite-element analysis. Simplified 2D linear models were established first, followed by nonlinear models in which the plastic hinges formed in the bridge columns were taken into consideration. The relative movement at the expansion joints were assumed to be const
40、rained in the vertical direction but free in the horizontal and rotational rections. The substructure columns were assumed to be fixed in their footings, and the abutments were modeled as roller supports. The dampers selected for this study are the Kelvinand Maxwell-type linear viscoelastic dampers,
41、 which consist of a elastic spring and a viscous damperthe former connected in parallel and the latter in series. From the viewpoint of thermal expansion, however, the Maxwell type is the obvious choice, in principle.FIG. 1. Elevations of Example BridgesTABLE 1. Material and Cross-Sectional Properti
42、es of Example BridgesTABLE 2. Natural Frequencies and Mass Participation Factors of Dominant ModesLINEAR ANALYSISTwo types of dampers were considered for the analysis: the Kelvin type, which consists of an elastic spring and a viscous damper connected in parallel, and the Maxwell type, which consist
43、s of an elastic spring and a viscous damper connected in series. Twenty-one different values of the spring constant k and damping coefficient c were studied in the ranges of 0 # k # 350.4 kN/cm (0 # k # 200 kips/in.) and 0 # c # 350.4 kN?s/cm (0 # c # 200 kips-s/in.) for the Kelvin model and 0 # k #
44、 10,512.4 kN/cm (0 # k # 6,000 kips/in.) and 0 # c # 350.4 kN? s/cm (0 # c # 200 kips-s/in.) for the Maxwell model. Totally, 231 different simulation cases were run for each model bridge.Table 2 shows the natural frequencies, periods, and mass participation factors of dominant modes for the horizont
45、al motions of the bridge models without the dampers installed at the expansion joints. Each of these bridge models is excited as a single structure because of the constraint imposed at vertical relative displacements of the expansion joints. Table 2 also shows the natural frequencies and periods of
46、each frame of the bridges separated by the expansion joints and supported by rollers at both of its ends.TABLE 3. Peak Relative Displacements at Joints without Dampers (in inches)aa1英寸. = 2.54 cm.bPGA of scaled motion is 0.70g.Note: Values in parentheses are maximum closure and others are maximum op
47、ening.Numerical simulation using SAP90 was first performed for the case without dampers installed at the expansion joints. The resulting peak relative displacement response at expansion joints of the bridges under the above-mentioned earthquake inputs are listed in Table 3. Because of geometric symm
48、etry, the relative displacements at left and right joints in bridge TY2H are identical. The relative displacement is computed under the following assumption: the initial relative positions of the adjacent two decks are such that they can accommodate the computed relative displacement without inducing pounding and/o