《毕业论文外文翻译-高速数控AISI 304不锈钢加工;工艺参数优化的多目标遗传算法.doc》由会员分享,可在线阅读,更多相关《毕业论文外文翻译-高速数控AISI 304不锈钢加工;工艺参数优化的多目标遗传算法.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、附件1:外文资料翻译译文高速数控AISI 304不锈钢加工;工艺参数优化的多目标遗传算法V. S. Thangarasu*, G. Devaraj, R. Sivasubramanian摘要这项工作是建立与基本参数的关系的反应,即表面粗糙度(Ra)及材料去除率(MRR)。田口通过Box-Behnken响应(响应面法)方法被用于开发预测公式和多目标遗传算法(MOGA)是用于高速数控铣削过程具有较高的主轴转速优化,更好的表面光洁度和材料去除率的进给速度和切削深度。RA和MRR是各种工艺参数可控结式主轴转速,进给速度和切削深度,材料的硬度,湿的或干的加工,类型的插入,和工作动力,与刀具的几何形状的刀
2、具磨损率。为加工参数的选择需要科学,条件和刀具的最合适的类型,一直觉得多年来消除减小误差的人为干预,提高系统生产力。高速数控铣削过程是科学的优化使用这种方法制定一个数学模型,涉及的表面粗糙度和材料去除率切削参数的端铣,精确的主轴转速,进给速度,切削深度和插入式,减少了人为干预的过程。关键词:数控铣床,优化,表面光洁,DOE,方差分析,材料去除率,箱Benkhen法,遗传算法,不锈钢1.景区简介中小企业参与国内和全球客户的精密零件的制造。这些公司的能力主要取决于他们以合理的价格与加工的最佳实践生产兼容产品的能力。大多数这些制造业也取决于技术和用于切削条件和刀具选择的最优选择机床操作经验。没有拇指
3、规则是用来适合特定产品的条件。因此,相当大的努力取得进展,以消除工手册为基础的切削条件,为某一特定工作/订单的刀具选择保守的使用方法。为加工参数的选择需要科学,条件和刀具的最合适的类型,一直觉得多年来消除减小误差的人为干预。人们早已认识到,在切削条件,如进给速度,切削速度和切削深度,应科学地选择优化的加工操作和提高生产力经济学。尽管在低速数控加工建立最佳的切削速度的早期作品,一些研究人员(moshat等人。,2010;穆斯塔法阿里,2011;方等人。,2007)报道,工艺参数需要优化高速数控铣床是中小制造业不可缺少的和昂贵的过程。总的趋势是降低加工成本、时间和提高精度和生产率。这项工作是建立与
4、基本参数的关系的反应,即表面粗糙度(Ra)及材料去除率(MRR)。田口法(基于响应面法)方法被用于开发数控高速铣削过程中具有较高的主轴速度预测公式,具有更好的表面光洁度和morematerial去除率的进给速度和切削深度。表面质量是最重要的客户要求;加工零件的表面质量的指标是表面粗糙度。表面粗糙度的各种工艺参数可控结式主轴转速,进给速度和切削深度,材料的硬度,湿的或干的加工,和工作动力,刀具的磨损率随着刀具几何。研究工作(拉蒙quiza萨尔迪纳斯等人。库萨等人2006。2007)已经解决了切削速度的影响,饲料,切削深度,刀尖半径等因素对表面粗糙度,表面粗糙度和材料去除率的同时优化(材料去除率)
5、并没有讨论,因为他们是独立的,非线性的。这项工作是获得了一个数学模型,涉及的表面粗糙度和材料去除率切削参数的端铣,精确的主轴转速,进给速度,切割和插入式深度。2对中小企业的案例研究计划的案例研究的数控加工进行确定的各种参数的影响深度。因此,重要的参数,在文献中表示(moshat等人。,2010,拉蒙quiza萨尔迪纳斯等人2006,银白杨和弗氏2008)和信息已在下列数控工作订单制造企业车间收集。(我)先进制造实验室,CIT,哥印拜陀;(ii)coindia现代工具室单元II,民用机场,哥印拜陀;(三)斯里兰卡gowrish数控有限公司chinnavedampatti,哥印拜陀;(四)斯里兰卡
6、parthasarathicnc公司chinnavedampatti,哥印拜陀;(五)genune数控有限公司kalappatti,哥印拜陀;(六)宝石精密工程,及甘纳巴迪,哥印拜陀。参数的确定是研究在2007和2008进行了。3文献调查详细调查研究最近发表在著名的期刊进行了深入的研究以获得最好的知识和约束。通过moshat等人的研究。(2010)在数控铣削加工参数采用基于PCA的田口方法,为优化的目的而不同时优化的表面粗糙度和材料去除率的研究,优化研究。routara等人。(2010)给出了轮廓的软质材料铣削参数优化研究数控端面铣削UNS c34000中铅黄铜多的表面粗糙度特性和一个单一的响
7、应研究的基础上确定要研究的参数。在实验室进行了案例研究提示实时研究,为制造企业在这里找到解决方案。穆斯塔法和阿里(2006)分析了工件的长度和直径的影响,切削深度和进给量,同时也调查了切削速度,这是一个重要的加工参数,保持恒定。田口方法在这项工作中使用,以获得更可靠和最佳的结果。库萨等人。(2011)解释了过度使用高速铣精加工的铝和镁更频繁的使用的结果的表面质量高和更短的加工时间省略磨。kadirgama和Noor等人(2008)强调了表面粗糙度的优化铣削铝合金(AA6061-T6)硬质涂层刀片采用响应曲面法(RSM)和径向基函数网络(RBFN)预测的推力和表面粗糙度。kechagias(20
8、11)提出了刀具的几何形状和在端铣铝合金5083,利用田口L18标准正交阵列实验研究了表面纹理的切削参数的影响。方等人。(2007)已经进行了广泛的研究在过去的后刀面磨损和月牙洼磨损,在高速切削加工对刀具刃口磨损的效果,对切削力和振动的3D高速完成车削镍基超合金Inconel 718。银白杨和弗洛里奇(2008)编制了高速铣削钛合金的个案研究,对不同的冶金和加工条件对研究考虑提供基础。钛合金是基于案例研究为中等切削速度和进给率得到飞机的材料更好的材料去除的输入参数的设置进行了高速铣削过程。Aggarwal和Singh(2005)回顾了各种线性和非线性优化技术和详细的相对优势进行了讨论和推断的非
9、线性优化方法,最适合于加工过程的优化。作者的建议是遵循适当的优化方法的基础上,在手的问题,也要使用基础统计的方法得到初始基本可行解和非线性遗传算法根据各自的问题和解决方案的需求。真正的框架是由曾与陈进行研究开发(2005)在两个阶段的参数优化利用田口稳健设计方法的准确性较好,这促使与田口DOE和同时优化过程的两个阶段分析方法,把各种参数对表面粗糙度要求的案例研究。赛济德(2005)的端面铣削过程进行了以获得最佳的参数,切屑的形成和表面粗糙度的仿真模型,分析并建议考虑参数的数量更高层次的分析得到的参数包括切削力的最佳设置,刀具的磨损率和湿的或干的过程。fidan和ElSawy(2002)突出了知
10、识为基础的解决方案,使用不同的切削条件下的铣削过程的优化,找到了获得加工涉及大量的变参数软件解决方案。楼等。(1999)开发的数控铣削过程但只集中于平均粗糙度但不在材料去除率,表面粗糙度的预测技术。上述文献的分析给了我们一个机会来了解国家的艺术和为中小型企业需要时间的,在实验进行的案例研究。附件2:外文原文High speed CNC machining of AISI 304 stainless steel; Optimization of process parameters by MOGAV. S. Thangarasu*, G. Devaraj, R. SivasubramanianA
11、bstractThis work is to establish the relationship with the basic parameters to the responses namely Surface roughness (Ra) and Material Removal Rate (MRR). The Taguchi based Box-Behnken RSM (Response Surface Methodology) method is used to develop prediction formula and Multi Objective Genetic Algori
12、thm (MOGA) is used for High speed CNC milling process optimization with higher Spindle speed, Feed rate and Depth of cut for better surface finish and material removal rate. The Ra and MRR is resultant of various controllable process parameters are Spindle speed, Feed rate and Depth of Cut, Hardness
13、 of the material, wet or dry machining, type of insert, and Dynamic forces on the job, tool wear rate with Cutter geometry. The need for scientific selection of machining parameters, conditions and the most suitable type of cutting tool has been felt over the years to eliminate the human interventio
14、n to reduce the errors and to improve productivity of the system. High speed CNC milling process is scientifically optimized using this method formulating a mathematical model that relates the surface roughness and MRR with cutting parameters in end milling, precisely to the Spindle speed, Feed rate
15、, Depth of cut and insert type, which reduces human intervention on the process.Keywords: CNC milling, optimization, surface finish, DOE, ANOVA, material removal rate, Box-Benkhen method, genetic algorithm, stainless steel1. IntroductionSmall and medium size enterprises are involved in manufacturing
16、 of precision components for domestic and global customers. The capability of these companies mainly lies on their ability to produce compatible products at affordable price with best practices of machining. Most of these manufacturing industries are depending on the skill and experience of machine
17、tool operators for optimal selection of cutting conditions and choice of cutting tools. There is no thumb rule is in use to suit the product specific conditions. Thus considerable efforts are in progress to eliminate the use of tool makers handbook-based conservative method of selection of cutting c
18、onditions and cutting tool selection for a specific job/ order. The need for scientific selection of machining parameters, conditions and the most suitable type of cutting tool has been felt over the years to eliminate the human intervention to reduce the errors. It has long been recognized that con
19、ditions during cutting, such as feed rate, cutting speed and depth of cut, should be selected scientifically to optimize the economics of machining operations and to improve productivity. Despite early works on establishing optimum cutting speeds in low speed CNC machining, a few researchers (Moshat
20、 et al., 2010; Mustafa and Ali, 2011; Fang et al., 2007) have reported that the process parameters need to be optimized as high speed CNC milling is an indispensable and costly process for small and medium manufacturing industry. The general trend is to reduce the machining cost and time and improvi
21、ng the accuracy and productivity.This work is to establish the relationship with the basic parameters to the responses namely Surface roughness (Ra) and Material Removal Rate (MRR). The Taguchi based RSM (Response Surface Methodology) method is used to develop prediction formula for High speed CNC m
22、illing process with higher Spindle speed, Feed rate and Depth of cut with better surface finish and morematerial removal rate. The surface quality is one of the most important customer requirements; the indicator of surface quality on machined parts is surface roughness. The surface roughness is res
23、ultant of various controllable process parameters are Spindle speed, Feed rate and Depth of Cut, Hardness of the material, wet or dry machining, and Dynamic forces on the job, tool wear ratewith Cutter geometry. The research works (Ramon Quiza Sardinas et al. 2006; Cusa et al. 2007) have addressed t
24、he effects of the cutting speed, feed, depth of cut, nose radius and other factors on the surface roughness but simultaneous optimization of Surface roughness and MRR (Material Removal Rate) was not discussed because they are independent and nonlinear. This work is to obtain a mathematical model tha
25、t relates the surface roughness and MRR with cutting parameters in end milling, precisely to the Spindle speed, Feed rate, Depth of cut and insert type.2. Case study on small and medium enterprisesPlanned case study on the CNC machining was conducted to ascertain the depth of influence of various pa
26、rameters. Thus important parameters are indicated in the literature (Moshat et al., 2010, Ramon Quiza Sardinas et al 2006, Abele and Frolich 2008) and information has been collected at the shop floor of the following CNC job order manufacturing companies. (i) Advanced Manufacturing Laboratory, CIT,
27、Coimbatore; (ii) COINDIA Modern tool room Unit- II, Civil Aerodrome, Coimbatore; (iii) Sri Gowrish CNC Pvt. Ltd. Chinnavedampatti, Coimbatore; (iv) Sri ParthasarathiCNC Pvt. Ltd Chinnavedampatti, Coimbatore; (v) Genune CNC Pvt. Ltd. Kalappatti, Coimbatore; (vi) Gem precision Engineering, Ganapathy,
28、Coimbatore. The parameters ascertained are for the studies conducted during the 2007 & 2008.3. Literature surveyDetailed survey on the research works recently published in the eminent journals was studied in depth to acquire best knowledge and constraints of the study. The research paper by Moshat e
29、t al. (2010) studied on optimization of CNC milling process parameters using PCA based Taguchi method that had served the purposes of optimization but not simultaneously optimize the surface roughness and the material removal rate in the study. Routara et al. (2010) had given the outline of the soft
30、 material milling parameters with their study on optimization of CNC end milling of UNS C34000 medium leaded brass with multiple surface roughness characteristics and a single response study provided base in determining the parameters to be studied. The case studies conducted at the laboratory have
31、prompted for the real time studies and to find the solution for the manufacturing firms around the place. Mustafa and Ali (2006) analyzed the effect of the length and diameter of working piece, cutting depth and feed that were also investigated while the cutting speed, which is an important machinin
32、g parameter, was kept constant. Taguchi method was used in this work in order to obtain more reliable and optimum results. Cusa et al. (2011) explained about the excessive use of High-speed milling for precision machining of aluminium and magnesium and more frequently used results in high quality of
33、 the surface and shorter machining times by omitting grinding. Kadirgama and Noor et al (2008) highlighted about optimization of the surface roughness when milling Aluminium alloys (AA6061-T6) with carbide coated inserts using Response Surface Method (RSM) and Radian Basis Function Network (RBFN) to
34、 predict thrust force and surface roughness. Kechagias (2011) brought out the influence of cutter geometry and cutting parameters during end milling on the surface texture of aluminium alloy 5083 that was experimentally investigated using Taguchi L18 standard orthogonal array. Fang et al. (2007) had
35、 given the extensive research has been conducted in the past on tool flank wear and crater wear in high-speed machining by investigating the effect of tool edge wear on the cutting forces and vibrations in 3D high-speed finish turning of nickel-based super alloy Inconel 718. Abele and Frolich (2008)
36、 have compiled the case study of high speed milling of titanium alloys and have provided base for different metallurgical and machining conditions to be taken into account for the study. The case study of titanium based alloys were conducted for the high speed milling process for sets of input param
37、eters with moderate cutting speeds and feed rate to get better material removal of aircraft materials. Aggarwal and Singh (2005) reviewed various linear and non linear optimization techniques in detail and relative advantages are also discussed and inferred for the non linear optimization methods, t
38、he most suited for the optimization of machining processes. The suggestion of the authors is to follow appropriate set of optimization methods based on the problem on hand and also to use a base statistical method to get the initial basic feasible solution and a non linear like genetic algorithm acc
39、ording to the respective problem and solution requirements. The real frame work was developed by the study conducted by Tzeng and Chen (2005) on two phased parameter optimization for better accuracy by Taguchis robust design method, which prompted the two phase analysis technique with Taguchis DOE a
40、nd simultaneous optimization procedure to give away the various parameters on surface roughness requirements followed by a case study. Sai and Bouzid (2005) developed the simulation models and analysis of the chip formation and the surface roughness for up face milling process conducted to get the o
41、ptimal parameters and suggested to consider the more number of parameters with higher levels of analysis to get the best set of parameters including the cutting force, tool wear rate and wet or dry process. Fidan and Elsawy (2002) highlighted the knowledge based solution using various cutting condit
42、ions for optimizing the milling process and found out software solution to get the optimal parameters with machining involving large numbers of varying parameters. Lou et al. (1999) developed the prediction technique for the surface roughness of the CNC end milling process but focused only on the ro
43、ughness average but not at the material removal rate. The above literature analysis had given us an opportunity to knowthe state of the art and the need of the hour for the small and medium type companies, where the experiments were conducted for the case study.五分钟搞定5000字毕业论文外文翻译,你想要的工具都在这里!在科研过程中阅读
44、翻译外文文献是一个非常重要的环节,许多领域高水平的文献都是外文文献,借鉴一些外文文献翻译的经验是非常必要的。由于特殊原因我翻译外文文献的机会比较多,慢慢地就发现了外文文献翻译过程中的三大利器:Google“翻译”频道、金山词霸(完整版本)和CNKI“翻译助手。具体操作过程如下: 1.先打开金山词霸自动取词功能,然后阅读文献; 2.遇到无法理解的长句时,可以交给Google处理,处理后的结果猛一看,不堪入目,可是经过大脑的再处理后句子的意思基本就明了了; 3.如果通过Google仍然无法理解,感觉就是不同,那肯定是对其中某个“常用单词”理解有误,因为某些单词看似很简单,但是在文献中有特殊的意思,
45、这时就可以通过CNKI的“翻译助手”来查询相关单词的意思,由于CNKI的单词意思都是来源与大量的文献,所以它的吻合率很高。 另外,在翻译过程中最好以“段落”或者“长句”作为翻译的基本单位,这样才不会造成“只见树木,不见森林”的误导。四大工具: 1、Google翻译: google,众所周知,谷歌里面的英文文献和资料还算是比较详实的。我利用它是这样的。一方面可以用它查询英文论文,当然这方面的帖子很多,大家可以搜索,在此不赘述。回到我自己说的翻译上来。下面给大家举个例子来说明如何用吧比如说“电磁感应透明效应”这个词汇你不知道他怎么翻译,首先你可以在CNKI里查中文的,根据它们的关键词中英文对照来做
46、,一般比较准确。 在此主要是说在google里怎么知道这个翻译意思。大家应该都有词典吧,按中国人的办法,把一个一个词分着查出来,敲到google里,你的这种翻译一般不太准,当然你需要验证是否准确了,这下看着吧,把你的那支离破碎的翻译在google里搜索,你能看到许多相关的文献或资料,大家都不是笨蛋,看看,也就能找到最精确的翻译了,纯西式的!我就是这么用的。 2、CNKI翻译: CNKI翻译助手,这个网站不需要介绍太多,可能有些人也知道的。主要说说它的有点,你进去看看就能发现:搜索的肯定是专业词汇,而且它翻译结果下面有文章与之对应(因为它是CNKI检索提供的,它的翻译是从文献里抽出来的),很实用
47、的一个网站。估计别的写文章的人不是傻子吧,它们的东西我们可以直接拿来用,当然省事了。网址告诉大家,有兴趣的进去看看,你们就会发现其乐无穷!还是很值得用的。 3、网路版金山词霸(不到1M): 4、有道在线翻译:翻译时的速度:这里我谈的是电子版和打印版的翻译速度,按个人翻译速度看,打印版的快些,因为看电子版本一是费眼睛,二是如果我们用电脑,可能还经常时不时玩点游戏,或者整点别的,导致最终SPPEED变慢,再之电脑上一些词典(金山词霸等)在专业翻译方面也不是特别好,所以翻译效果不佳。在此本人建议大家购买清华大学编写的好像是国防工业出版社的那本英汉科学技术词典,基本上挺好用。再加上网站如:google
48、 CNKI翻译助手,这样我们的翻译速度会提高不少。具体翻译时的一些技巧(主要是写论文和看论文方面) 大家大概都应预先清楚明白自己专业方向的国内牛人,在这里我强烈建议大家仔细看完这些头上长角的人物的中英文文章,这对你在专业方向的英文和中文互译水平提高有很大帮助。 我们大家最蹩脚的实质上是写英文论文,而非看英文论文,但话说回来我们最终提高还是要从下大工夫看英文论文开始。提到会看,我想它是有窍门的,个人总结如下: 1、把不同方面的论文分夹存放,在看论文时,对论文必须做到看完后完全明白(你重视的论文);懂得其某部分讲了什么(你需要参考的部分论文),在看明白这些论文的情况下,我们大家还得紧接着做的工作就是把论文中你觉得非常巧妙的表达写下来,或者是你论文或许能用到的表达摘记成本。这个本将是你以后的财富。你写论文时再也不会为了一些表达不符合西方表达模式而烦恼。你的论文也降低了被SCI或大牛刊物退稿的几率。不信,你可以试一试 2、把摘记的内容自己编写成检索,这个过程是我们对文章再回顾,而且是对你摘抄的经典妙笔进行梳理的重要阶段。你有了这个过程。写英文论文时,将会有一种信手拈来的感觉。许多文笔我们不需要自己再翻译了。当然前提是你梳理的非常细,而且中英文对照写的比较详细。 3、最后一点就是我们往大成修炼的阶段了,万事不是说成的,它是做出来的。写英文论