《高中数学第一章导数及其应用1.2导数的计算导数概念与运算基础知识总结素材新人教A版选修2-2讲解.doc》由会员分享,可在线阅读,更多相关《高中数学第一章导数及其应用1.2导数的计算导数概念与运算基础知识总结素材新人教A版选修2-2讲解.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高中数学第一章导数及其应用1.2导数的计算导数概念与运算基础知识总结素材新人教A版选修2-2讲解高中数学第一章导数及其应用1.2导数的计算导数概念与运算基础知识总结素材新人教A版选修2-2讲解导数概念与运算基础知识总结知识清单1导数的概念函数y=f(x),如果自变量x在x处有增量,那么函数y相应地有增量=f(x+)f(x),比值叫做函数y=f(x)在x到x+之间的平均
2、变化率,即=。如果当时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f(x)或y|。即f(x)=。 说明:(1)函数f(x)在点x处可导,是指时,有极限。如果不存在极限,就说函数在点x处不可导,或说无导数。(2)是自变量x在x处的改变量,时,而是函数值的改变量,可以是零。由导数的定义可知,求函数y=f(x)在点x处的导数的步骤(可由学生来归纳):(1)求函数的增量=f(x+)f(x);(2)求平均变化率=;(3)取极限,得导数f(x)=。2导数的几何意义函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x)处的切线的斜率。也
3、就是说,曲线y=f(x)在点p(x,f(x)处的切线的斜率是f(x)。相应地,切线方程为yy=f/(x)(xx)。3几种常见函数的导数: ; ; ; .4两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: (法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:若C为常数,则.即常数与函数的积的导数等于常数乘以函数的导数: 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:=(v0)。形如y=f的函数称为复合函数。复合函数求导步骤:分解求导回代
4、。法则:y|= y| u|导数应用知识清单1 单调区间:一般地,设函数在某个区间可导,如果,则为增函数;如果,则为减函数;如果在某区间内恒有,则为常数;2极点与极值:曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正;3最值:一般地,在区间a,b上连续的函数f在a,b上必有最大值与最小值。求函数在(a,b)内的极值;求函数在区间端点的值(a)、(b);将函数 的各极值与(a)、(b)比较,其中最大的是最大值,其中最小的是最小值。4定积分(1)概念:设函数f(x)在区间a,b上连续,用分点ax0x1xi1xix
5、nb把区间a,b等分成n个小区间,在每个小区间xi1,xi上取任一点i(i1,2,n)作和式In(i)x(其中x为小区间长度),把n即x0时,和式In的极限叫做函数f(x)在区间a,b上的定积分,记作:,即(i)x。这里,a与b分别叫做积分下限与积分上限,区间a,b叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式。基本的积分公式:C;C(mQ, m1);dxlnC;C;C;sinxC;cosxC(表中C均为常数)。(2)定积分的性质(k为常数);(其中acb。(3)定积分求曲边梯形面积由三条直线xa,xb(ab),x轴及一条曲线yf(x)(f(x)0)围成的曲边梯
6、的面积。如果图形由曲线y1f1(x),y2f2(x)(不妨设f1(x)f2(x)0),及直线xa,xb(ab)围成,那么所求图形的面积SS曲边梯形AMNBS曲边梯形DMNC。典型例题一 导数的概念与运算EG:如果质点A按规律s=2t3运动,则在t=3 s时的瞬时速度为( )A. 6m/s B. 18m/s C. 54m/s D. 81m/s变式:定义在D上的函数,如果满足:,常数,都有M成立,则称是D上的有界函数,其中M称为函数的上界.【文】(1)若已知质点的运动方程为,要使在上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a的取值范围.【理】(2)若已知质点的运动方程为,要使在上的每
7、一时刻的瞬时速度是以M=1为上界的有界函数,求实数a的取值范围.EG:已知的值是( )A. B. 2 C. D. 2变式1:( )A2C3D1变式2:( )ABCD根据所给的函数图像比较变式:函数的图像如图所示,下列数值排序正确的是( ) A. y B. C. D. O 1 2 3 4 x EG:求所给函数的导数:。变式:设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x0时,0.且g(3)=0.则不等式f(x)g(x)0的解集是A(3,0)(3,+) B(3,0)(0, 3)C(, 3)(3,+) D(, 3)(0, 3)EG:已知函数.(1)求这个函数的导数;(2)求这个函数在点处
8、的切线的方程.变式1:已知函数.(1)求这个函数在点处的切线的方程;(2)过原点作曲线yex的切线,求切线的方程.变式2:函数yax21的图象与直线yx相切,则a( )A. B. C. D. 1EG:判断下列函数的单调性,并求出单调区间:变式1:函数的一个单调递增区间是A. B. C. D. 变式2:已知函数(1)若函数的单调递减区间是(-3,1),则的是 . (2)若函数在上是单调增函数,则的取值范围是 .变式3: 设,点P(,0)是函数的图象的一个公共点,两函数的图象在点P处有相同的切线.()用表示a,b,c;()若函数在(1,3)上单调递减,求的取值范围.EG:求函数的极值.求函数在上的
9、最大值与最小值.变式1: 函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点( )A1个 B2个 C3个D4个变式2:已知函数在点处取得极大值,其导函数的图象经过点,如图所示.求:()的值;()的值.变式3:若函数,当时,函数极值,(1)求函数的解析式;(2)若函数有3个解,求实数的取值范围变式4:已知函数,对x1,2,不等式f(x)c2恒成立,求c的取值范围。EG:利用函数的单调性,证明:变式1:证明:,变式2:(理科)设函数f(x)=(1+x)2ln(1+x)2.若关于x的方程f(x)=x2+x+a在0,2上恰好有两个相异的实根,求实数a的取值范围.EG: 函数若恒
10、成立,求实数的取值范围 变式1:设函数若恒成立,求实数的取值范围.变式2:如图,曲线段OMB是函数的图象,轴于点A,曲线段OMB上一点M处的切线PQ交x轴于点P,交线段AB于点Q,(1)若t已知,求切线PQ的方程 (2)求的面积的最大值变式3:用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折900角,再焊接而成,问该容器的高为多少时,容器的容积最大?最大的容积是多少?变式4:某厂生产某种产品件的总成本(万元),已知产品单价的平方与产品件数成反比,生产100件这样的产品单价为50万元,产量定为多少时总利润最大?EG:计算下列定积分:(理科定积分、微积分)变式1:计算:;(1);(2)变式2: 求将抛物线和直线围成的图形绕轴旋转一周得到的几何体的体积.变式3:在曲线上某一点A处作一切线使之与曲线以及轴所围的面积为,试求:(1)切点A的坐标;(2)在切点A的切线方程.-