matlab绘制布朗运动的二维 三维图.doc

上传人:豆**** 文档编号:29931609 上传时间:2022-08-02 格式:DOC 页数:12 大小:185KB
返回 下载 相关 举报
matlab绘制布朗运动的二维 三维图.doc_第1页
第1页 / 共12页
matlab绘制布朗运动的二维 三维图.doc_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《matlab绘制布朗运动的二维 三维图.doc》由会员分享,可在线阅读,更多相关《matlab绘制布朗运动的二维 三维图.doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、数学应用软件大型实验实验报告实验序号: 日期: 年 月 日班级姓名学号实验名称Matlab绘制布朗运动的二维、三维模拟图问题背景描述:液体分子不停地做无规则的运动,不断地随机撞击悬浮微粒。悬浮的微粒足够小时,受到的来自各个方向的液体分子的撞击作用是不平衡的。在某一瞬间,微粒在另一个方向受到的撞击作用强,致使微粒又向其它方向运动。这样,就引起了微粒的无规则的布朗运动。布朗运动是英国植物学家布朗在观察液体中浮游微粒运动时发现的随机现象,现在已经成为随机过程理论重要的概念之一。布朗运动是悬浮颗粒永不停息的做无规则运动的现象。实验目的:学习Matlab有关数据处理和图形绘制,用给出的一维布朗运动推导出

2、二维布朗运动和三维布朗运动,并利用Matlab软件绘制相应的图形,更清晰直观的观察分别在二维、三维情况下的布朗运动,即在二维、三维情况下的随机现象。实验原理与数学模型:从一维布朗运动函数推导出二维,三维布朗运动函数,存放在Matlab下的work文件夹中。利用Matlab随机产生函数中的下一个点,并利用Matlab的图形绘制功能绘制二维和三维的模拟图形。实验所用软件及版本:Matlab7.0.1主要内容(要点):1. 了解布朗运动和一维布朗运动函数和模拟图;2. 编写二维布朗运动函数;3. 绘制二维布朗运动函数模拟图;4. 编写三维布朗运动函数;5. 绘制三维布朗运动函数模拟图。实验过程记录(

3、含:基本步骤、主要程序清单及异常情况记录等):基本步骤:1. 编写二维、三维布朗运动函数2. 绘制二维、三维布朗运动函数模拟图形主要程序:一维布朗运动:function t,w=br1(t0,tf,h)t=t0:h:tf;t=t;x=randn(size(t);w(1)=0;for k=1:length(t)-1; w(k+1)=w(k)+x(k);end;w=sqrt(h)*w;w=w(:) t0=0; tf=10; h=0.01; t,w=br1(t0,tf,h) plot(t,w); xlabel(t); ylabel(w)二维布朗运动:function x,y,m,n=br2(x0,x

4、f,y0,yf,h)x=x0:h:xf;y=y0:h:yf;a=randn(size(x);b=randn(size(y);m(1)=0;n(1)=0;for k=1:length(x)-1; m(k+1)=m(k)+a(k); n(k+1)=n(k)+b(k);end;x0=0;xf=10;h=0.01;y0=0;yf=10; x,y,m,n=br2(x0,xf,y0,yf,h)plot(m,n)xlabel(m);ylabel(n)三维布朗运动function x,y,z,m,n,l=br3(x0,xf,y0,yf,z0,zf,h)x=x0:h:xf;y=y0:h:yf;z=z0:h:zf

5、a=randn(size(x);b=randn(size(y);c=randn(size(z);m(1)=0;n(1)=0;l(1)=0;for k=1:length(x)-1; m(k+1)=m(k)+a(k); n(k+1)=n(k)+b(k); l(k+1)=l(k)+c(k);end;x0=0;xf=10;h=0.01;y0=0;yf=10;z0=0;zf=10; x,y,z,m,n,l=br3(x0,xf,y0,yf,z0,zf,h)plot3(m,n,l)xlabel(x);ylabel(y);zlabel(z)异常情况:二维布朗运动function t,w=fun2(t0,tf,

6、h)t=t0:h:tf;x=randn(length(t),2)*sqrt(h);w(1,2)=0; for k=1:length(t)-1 w(k+1,2)=w(k,2)+x(k,2);endw=w(:,2); t0=0; tf=10; h=0.01; t,w=fun2(t0,tf,h) plot(t,w) xlabel(t); ylabel(w(2)二维布朗运动模拟图三维布朗运动function t,w=fun3(t0,tf,h)t=t0:h:tf;x=randn(length(t),3)*sqrt(h);w(1,3)=0;for k=1:length(t)-1 w(k+1,3)=w(k,

7、3)+x(k,3);endw=w(:,3); t0=0; tf=10; h=0.01; t,w=fun3(t0,tf,h) plot(t,w); xlabel(t); ylabel(w(3)三维布朗运动模拟图实验结果报告与实验总结:一维模拟图二维模拟图三维模拟图三维模拟图思考与深入:1. 布朗运动是永不停息的无规则运动,是一个随机过程,故每次绘制出的图形都是随机的。2. 布朗运动与无规则运动的关系:无规则运动是布朗运动的理想状态。3. 布朗运动代表了一种随机涨落现象,它的理论在其他领域也有重要应用。如对测量仪器的精度限度的研究;高倍放大电讯电路中的背景噪声的研究等。4. 当缩小步长h时,布朗运

8、动的二维三维图形变化:当h=0.001时:二维布朗运动模拟图三维布朗运动模拟图当h接近于无穷小时,二维三维布朗运动模拟图形将会出现一个面。5. 利用矩阵编写函数,绘制二维、三维布朗运动二维布朗运动function t,w=fm2(t0,tf,h)t=t0:h:tf;x=randn(length(t),2)*sqrt(h);w(1,1)=0;w(1,2)=0;for k=1:length(t)-1 w(k+1,1)=w(k,1)+x(k,1); w(k+1,2)=w(k,2)+x(k,2);end t0=0; tf=10; h=0.01; t,w=fm2(t0,tf,h) plot(w(:,1)

9、,w(:,2)将二维三维函数公用一个文件表示二维布朗运动模拟图三维布朗运动function t,w=fm3(t0,tf,h)t=t0:h:tf;x=randn(length(t),3)*sqrt(h);w(1,1)=0;w(1,2)=0;w(1,3)=0;for k=1:length(t)-1 w(k+1,1)=w(k,1)+x(k,1); w(k+1,2)=w(k,2)+x(k,2); w(k+1,3)=w(k,3)+x(k,3);end t0=0; tf=10; h=0.01; t,w=fm2(t0,tf,h) plot3(w(:,1),w(:,2),w(:,3)三维布朗运动模拟图12拟运

10、) ):,: ,(= =0 00 ) (= +) (),() ) ) (- 000=0 )( ) : ,(= 运朗拟运表表一数三), :( ,( .=0 00 ) () + )(),) + - 0 0=)( )( :0 0( , 运朗布运朗维制绘写矩利面一会形动布维,穷于拟运拟运时0.化变三维运,步等究噪背路大放研度的仪对应要域其的它现随了态想动朗动则关运无的随形图次故过个,规息永入入与拟拟拟拟结验实拟动 )( ) 0 , . 0 0=) ), )() (-)( 0) *) ( :0 , , 运运拟拟 )( ,( =0=00), ) )() (- : = )( *, ( : , 运朗况 ) )

11、 , 0 , =, , 0 00=; 0.0 0 )() ( )()(=+ )(+ )+ ( 0=0)0) ( ) ) : :0 : , 0 , , 运运布 ) 0 ,(= 0= 0;0;= = ) ) ) : 0)0=) ( ) : :0 , , , 动运 )( ) ( (=, 0 0 00:( ) ) ) - 0) ( : ,0(=, 动朗序图模动朗维函函布维骤)录情及序要步基(图拟函布数函朗维图拟函布数动布图模数朗一运)(. 本本用形形维和绘制绘 用,一数生机 用利件 下 存函朗维,推动布型学与象现随维维即运的情三在察观清更应制软 用,运布运维出动布的,绘理处 习:象的动规的永颗运布一要

12、论过为在象随现动微中观朗学英动。朗的的了就,运方向微,击到向一微瞬某的是作子分方自来,足的。粒击地不运无地子:景拟维、的布绘名实学姓班 月 期 号报验实大实报 期 班学布拟:无不的,方子瞬向,方就的动朗微现为要布的的习 ,布出, 更观三即维与布,朗 下 生用绘和形本.运朗图布函函数图要情录函朗图朗 (, () ) : , ( ) 动 , : (0 ) ) )=; 0 , 布 , ,: : )()00 + () ) 00,= ) 运 ,: , = :- 00 , ) 拟 ,0 ) ) ) 0 0 )()实结拟入息过次的关动态随的应的放大噪,三.时于穷动面写绘布 0 )0 +)+) )0.(,( 数表朗 =,: )00 -) + 0 :)运

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁