湖北省武汉市2017届中考数学试卷(附答案解析).docx

上传人:豆**** 文档编号:29919644 上传时间:2022-08-02 格式:DOCX 页数:34 大小:414.54KB
返回 下载 相关 举报
湖北省武汉市2017届中考数学试卷(附答案解析).docx_第1页
第1页 / 共34页
湖北省武汉市2017届中考数学试卷(附答案解析).docx_第2页
第2页 / 共34页
点击查看更多>>
资源描述

《湖北省武汉市2017届中考数学试卷(附答案解析).docx》由会员分享,可在线阅读,更多相关《湖北省武汉市2017届中考数学试卷(附答案解析).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1计算的结果为()A6B6C18D182若代数式在实数范围内有意义,则实数a的取值范围为()Aa=4Ba4Ca4Da43下列计算的结果是x5的为()Ax10x2Bx6xCx2x3D(x2)34在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.501.601.651.701.751.80人数232341则这些运动员成绩的中位数、众数分别为()A1.65、1.70B1.65、1.75C1.70、1.75D1.70、1.705计算(x+1)(x+2)的结果为()Ax2+2Bx2+3x+2C

2、x2+3x+3Dx2+2x+26点A(3,2)关于y轴对称的点的坐标为()A(3,2)B(3,2)C(3,2)D(2,3)7某物体的主视图如图所示,则该物体可能为()ABCD8按照一定规律排列的n个数:2、4、8、16、32、64、,若最后三个数的和为768,则n为()A9B10C11D129已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()ABCD10如图,在RtABC中,C=90,以ABC的一边为边画等腰三角形,使得它的第三个顶点在ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()【版权所有:21教育】A4B5C6D7二、填空题(本大题共6个小题,每小题3分,共18

3、分)11计算23+(4)的结果为 12计算的结果为 13如图,在ABCD中,D=100,DAB的平分线AE交DC于点E,连接BE若AE=AB,则EBC的度数为 21教育名师原创作品14一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同随机摸出两个小球,摸出两个颜色相同的小球的概率为 15如图,在ABC中,AB=AC=2,BAC=120,点D、E都在边BC上,DAE=60若BD=2CE,则DE的长为 16已知关于x的二次函数y=ax2+(a21)xa的图象与x轴的一个交点的坐标为(m,0)若2m3,则a的取值范围是 21*cnjy*com三、解答题(共8题,共72分)1

4、7解方程:4x3=2(x1)18如图,点C、F、E、B在一条直线上,CFD=BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论19某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图 各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510Bb8Cc5(1)在扇形图中,C部门所对应的圆心角的度数为 在统计表中,b= ,c= (2)求这个公司平均每人所创年利润20某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件其中甲种奖品每件40元,乙种奖品每件30元www.21-cn-(1)如果购

5、买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21*cnjy*com21如图,ABC内接于O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分BAC;(2)若BC=6,sinBAC=,求AC和CD的长22如图,直线y=2x+4与反比例函数y=的图象相交于A(3,a)和B两点(1)求k的值;(2)直线y=m(m0)与直线AB相交于点M,与反比例函数的图象相交于点N若MN=4,求m的值;(3)直接写出不等式x的解集23已知四边形ABCD的一组对边AD、BC的延长线

6、交于点E(1)如图1,若ABC=ADC=90,求证:EDEA=ECEB;(2)如图2,若ABC=120,cosADC=,CD=5,AB=12,CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F若cosABC=cosADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24已知点A(1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FHAE;(3)如图2,直线

7、AB分别交x轴、y轴于C、D两点点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1计算的结果为()A6B6C18D18【考点】73:二次根式的性质与化简【分析】根据算术平方根的定义计算即可求解【解答】解: =6故选:A2若代数式在实数范围内有意义,则实数a的取值范围为()Aa=4Ba4Ca4Da4【考点】62:分式有意义的条件【分析】分式有意

8、义时,分母a40【解答】解:依题意得:a40,解得a4故选:D3下列计算的结果是x5的为()Ax10x2Bx6xCx2x3D(x2)3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可【解答】解:A、x10x2=x8B、x6x=x6xC、x2x3=x5D、(x2)3=x6故选C4在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.501.601.651.701.751.80人数232341则这些运动员成绩的中位数、众数分别为()A1.6

9、5、1.70B1.65、1.75C1.70、1.75D1.70、1.70【考点】W5:众数;W4:中位数【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C5计算(x+1)(x+2)的结果为()Ax2+2Bx2+3x+2Cx2+3x+3Dx2+2x+2【考点】4B:多项式乘多项式【分析】原式利用多项式乘以多项式法则计算即可得到结果【解

10、答】解:原式=x2+2x+x+2=x2+3x+2,故选B6点A(3,2)关于y轴对称的点的坐标为()A(3,2)B(3,2)C(3,2)D(2,3)【考点】P5:关于x轴、y轴对称的点的坐标【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案【解答】解:A(3,2)关于y轴对称的点的坐标为(3,2),故选:B7某物体的主视图如图所示,则该物体可能为()ABCD【考点】U3:由三视图判断几何体【分析】根据主视图利用排除法确定正确的选项即可【解答】解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;

11、D、五棱柱的主视图为矩形,不符合题意,故选:A8按照一定规律排列的n个数:2、4、8、16、32、64、,若最后三个数的和为768,则n为()A9B10C11D12【考点】37:规律型:数字的变化类【分析】观察得出第n个数为(2)n,根据最后三个数的和为768,列出方程,求解即可【解答】解:由题意,得第n个数为(2)n,那么(2)n2+(2)n1+(2)n=768,当n为偶数:整理得出:32n2=768,解得:n=10;当n为奇数:整理得出:32n2=768,则求不出整数,故选B9已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()ABCD【考点】MI:三角形的内切圆与内心【分析】如

12、图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作ADBC于D,设BD=x,则CD=5x由AD2=AB2BD2=AC2CD2,可得72x2=82(5x)2,解得x=1,推出AD=4,由BCAD=(AB+BC+AC)r,列出方程即可解决问题【解答】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作ADBC于D,设BD=x,则CD=5x由勾股定理可知:AD2=AB2BD2=AC2CD2,即72x2=82(5x)2,解得x=1,AD=4,BCAD=(AB+BC+AC)r,54=20r,r=,故选C10如图,在RtABC中,C=90,以ABC的一边为边

13、画等腰三角形,使得它的第三个顶点在ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A4B5C6D7【考点】KJ:等腰三角形的判定与性质【分析】以B为圆心,BC长为半径画弧,交AB于点D,BCD就是等腰三角形;以A为圆心,AC长为半径画弧,交AB于点E,ACE就是等腰三角形;以C为圆心,BC长为半径画弧,交AC于点F,BCF就是等腰三角形;作AC的垂直平分线交AB于点H,ACH就是等腰三角形;作AB的垂直平分线交AC于G,则AGB是等腰三角形;作BC的垂直平分线交AB于I,则BCI是等腰三角形以C为圆心,BC长为半径画弧,交AB于点K,BCK就是等腰三角形;【解答】解:如图:故选D

14、二、填空题(本大题共6个小题,每小题3分,共18分)11计算23+(4)的结果为2【考点】1G:有理数的混合运算【分析】原式先计算乘法运算,再计算加减运算即可得到结果【解答】解:原式=64=2,故答案为:212计算的结果为【考点】6B:分式的加减法【分析】根据同分母分式加减运算法则化简即可【解答】解:原式=,故答案为:13如图,在ABCD中,D=100,DAB的平分线AE交DC于点E,连接BE若AE=AB,则EBC的度数为302-1-c-n-j-y【考点】L5:平行四边形的性质【分析】由平行四边形的性质得出ABC=D=100,ABCD,得出BAD=180D=80,由等腰三角形的性质和三角形内角

15、和定理求出ABE=70,即可得出EBC的度数【来源:21世纪教育网】【解答】解:四边形ABCD是平行四边形,ABC=D=100,ABCD,BAD=180D=80,AE平分DAB,BAE=802=40,AE=AB,ABE=2=70,EBC=ABCABE=30;故答案为:3014一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同随机摸出两个小球,摸出两个颜色相同的小球的概率为【考点】X6:列表法与树状图法【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解【解答】解:画树状图如下:由树状图可知,共有20种等可

16、能结果,其中取出的小球颜色相同的有8种结果,两次取出的小球颜色相同的概率为=,故答案为:15如图,在ABC中,AB=AC=2,BAC=120,点D、E都在边BC上,DAE=60若BD=2CE,则DE的长为33【考点】KD:全等三角形的判定与性质;KQ:勾股定理;PB:翻折变换(折叠问题);R2:旋转的性质21世纪教育网版权所有【分析】将ABD绕点A逆时针旋转120得到ACF,连接EF,过点E作EMCF于点M,过点A作ANBC于点N,由AB=AC=2、BAC=120,可得出BC=6、B=ACB=30,通过角的计算可得出FAE=60,结合旋转的性质可证出ADEAFE(SAS),进而可得出DE=FE

17、,设CE=2x,则CM=x,EM=x、FM=4xx=3x、EF=ED=66x,在RtEFM中利用勾股定理可得出关于x的一元二次方程,解之可得出x的值,再将其代入DE=66x中即可求出DE的长【解答】解:将ABD绕点A逆时针旋转120得到ACF,连接EF,过点E作EMCF于点M,过点A作ANBC于点N,如图所示AB=AC=2,BAC=120,BN=CN,B=ACB=30在RtBAN中,B=30,AB=2,AN=AB=,BN=3,BC=6BAC=120,DAE=60,BAD+CAE=60,FAE=FAC+CAE=BAD+CAE=60在ADE和AFE中,ADEAFE(SAS),DE=FEBD=2CE

18、,BD=CF,ACF=B=30,设CE=2x,则CM=x,EM=x,FM=4xx=3x,EF=ED=66x在RtEFM中,FE=66x,FM=3x,EM=x,EF2=FM2+EM2,即(66x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),DE=66x=33故答案为:3316已知关于x的二次函数y=ax2+(a21)xa的图象与x轴的一个交点的坐标为(m,0)若2m3,则a的取值范围是a或3a2【考点】HA:抛物线与x轴的交点【分析】先用a表示出抛物线与x轴的交点,再分a0与a0两种情况进行讨论即可【解答】解:y=ax2+(a21)xa=(ax1)(x+a),当y=0时,x

19、1=,x2=a,抛物线与x轴的交点为(,0)和(a,0)抛物线与x轴的一个交点的坐标为(m,0)且2m3,当a0时,23,解得a;当a0时,2a3,解得3a2故答案为:a或3a2三、解答题(共8题,共72分)17解方程:4x3=2(x1)【考点】86:解一元一次方程【分析】去括号、移项、合并同类项、系数化为1即可得到方程的解【解答】解:4x3=2(x1)4x3=2x24x2x=2+32x=1x=18如图,点C、F、E、B在一条直线上,CFD=BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论【考点】KD:全等三角形的判定与性质【分析】求出CF=BE,根据SAS证AEBCF

20、D,推出CD=AB,C=B,根据平行线的判定推出CDAB【解答】解:CDAB,CD=AB,理由是:CE=BF,CEEF=BFEF,CF=BE,在AEB和CFD中,AEBCFD(SAS),CD=AB,C=B,CDAB19某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图 各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510Bb8Cc5(1)在扇形图中,C部门所对应的圆心角的度数为108在统计表中,b=9,c=6(2)求这个公司平均每人所创年利润【考点】VB:扇形统计图;W2:加权平均数【分析】(1)根据扇形圆心角的度数=部分

21、占总体的百分比360进行计算即可;先求得A部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B,C部门的人数;21教育网(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润【解答】解:(1)在扇形图中,C部门所对应的圆心角的度数为:36030%=108;A部门的员工人数所占的百分比为:130%45%=25%,各部门的员工总人数为:525%=20(人),b=2045%=9,c=2030%=6,故答案为:108,9,6;(2)这个公司平均每人所创年利润为: =7.6(万元)20某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件其中甲种奖品每件40元,

22、乙种奖品每件30元【来源:21cnj*y.co*m】(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用【分析】(1)设甲种奖品购买了x件,乙种奖品购买了(20x)件,利用购买甲、乙两种奖品共花费了650元列方程40x+30(20x)=650,然后解方程求出x,再计算20x即可;(2)设甲种奖品购买了x件,乙种奖品购买了(20x)件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680

23、元列不等式组,然后解不等式组后确定x的整数值即可得到该公司的购买方案【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(20x)件,根据题意得40x+30(20x)=650,解得x=5,则20x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20x)件,根据题意得,解得x8,x为整数,x=7或x=8,当x=7时,20x=13;当x=8时,20x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件21如图,ABC内接于O,AB=AC,CO的延长线交AB于点D(1)求证:A

24、O平分BAC;(2)若BC=6,sinBAC=,求AC和CD的长【考点】MA:三角形的外接圆与外心;T7:解直角三角形【分析】(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AOBC,再由等腰三角形的性质即可得出结论;(2)延长CD交O于E,连接BE,则CE是O的直径,由圆周角定理得出EBC=90,E=BAC,得出sinE=sinBAC,求出CE=BC=10,由勾股定理求出BE=8,证出BEOA,得出,求出OD=,得出CD,而BEOA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在RtACH中,由勾股定理求出AC的长即可【解答】(1)证明:延长AO交BC于

25、H,连接BO,如图1所示:AB=AC,OB=OC,A、O在线段BC的垂直平分线上,AOBC,又AB=AC,AO平分BAC;(2)解:延长CD交O于E,连接BE,如图2所示:则CE是O的直径,EBC=90,BCBE,E=BAC,sinE=sinBAC,=,CE=BC=10,BE=8,OA=OE=CE=5,AHBC,BEOA,即=,解得:OD=,CD=5+=,BEOA,即BEOH,OC=OE,OH是CEB的中位线,OH=BE=4,CH=BC=3,AH=5+4=9,在RtACH中,AC=322如图,直线y=2x+4与反比例函数y=的图象相交于A(3,a)和B两点(1)求k的值;(2)直线y=m(m0

26、)与直线AB相交于点M,与反比例函数的图象相交于点N若MN=4,求m的值;【出处:21教育名师】(3)直接写出不等式x的解集【考点】G8:反比例函数与一次函数的交点问题【分析】(1)把点A(3,a)代入y=2x+4与y=即可得到结论;(2)根据已知条件得到M(,m),N(,m),根据MN=4列方程即可得到结论;(3)根据x得到0解不等式组即可得到结论【解答】(1)点A(3,a)在y=2x+4与y=的图象上,2(3)+4=a,a=2,k=(3)(2)=6;(2)M在直线AB上,M(,m),N在反比例函数y=上,N(,m),MN=xNxm=4或xMxN=4,解得:m0,m=2或m=6+4;(3)x

27、1或x5x6,由x得:x0,0,0,或,结合抛物线y=x25x6的图象可知,由得,或,此时x1,由得,解得:5x6,综上,原不等式的解集是:x1或5x623已知四边形ABCD的一组对边AD、BC的延长线交于点E(1)如图1,若ABC=ADC=90,求证:EDEA=ECEB;(2)如图2,若ABC=120,cosADC=,CD=5,AB=12,CDE的面积为6,求四边形ABCD的面积;21cnjycom(3)如图3,另一组对边AB、DC的延长线相交于点F若cosABC=cosADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【考点】SO:相似形综合题【分析】(1)只要证明E

28、DCEBA,可得=,即可证明EDEA=ECEB;(2)如图2中,过C作CFAD于F,AGEB于G想办法求出EB,AG即可求出ABE的面积,即可解决问题;21世纪*教育网(3)如图3中,作CHAD于H,则CH=4,DH=3,作AGDF于点G,设AD=5a,则DG=3a,AG=4a,只要证明AFGCEH,可得=,即=,求出a即可解决问题;【解答】解:(1)如图1中,ADC=90,EDC+ADC=180,EDC=90,ABC=90,EDC=ABC,E=E,EDCEBA,=,EDEA=ECEB(2)如图2中,过C作CFAD于F,AGEB于G在RtCDF中,cosADC=,=,CD=5,DF=3,CF=

29、4,SCDE=6,EDCF=6,ED=3,EF=ED+DF=6,ABC=120,G=90,G+BAG=ABC,BAG=30,在RtABG中,BG=AB=6,AG=6,CFAD,AGEB,EFC=G=90,E=E,EFCEGA,=,=,EG=9,BE=EGBG=96,S四边形ABCD=SABESCDE=(96)66=7518(3)如图3中,作CHAD于H,则CH=4,DH=3,tanE=,作AGDF于点G,设AD=5a,则DG=3a,AG=4a,FG=DFDG=5+n3a,CHAD,AGDF,E=F,易证AFGCEH,=,=,a=,AD=5a=24已知点A(1,1)、B(4,6)在抛物线y=ax

30、2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FHAE;21cnjy(3)如图2,直线AB分别交x轴、y轴于C、D两点点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值【考点】HF:二次函数综合题【分析】(1)根据点A、B的坐标利用待定系数法,即可求出抛物线的解析式;(2)根据点A、F的坐标利用待定

31、系数法,可求出直线AF的解析式,联立直线AF和抛物线的解析式成方程组,通过解方程组可求出点G的坐标,进而可得出点H的坐标,利用分解因式法将抛物线解析式变形为交点式,由此可得出点E的坐标,再根据点A、E(F、H)的坐标利用待定系数法,可求出直线AE(FH)的解析式,由此可证出FHAE;(3)根据点A、B的坐标利用待定系数法,可求出直线AB的解析式,进而可找出点P、Q的坐标,分点M在线段PQ上以及点M在线段QP的延长线上两种情况考虑,借助相似三角形的性质可得出点M的坐标,再利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之即可得出结论【解答】解:(1)将点A(1,1)、B(4,6)代入

32、y=ax2+bx中,解得:,抛物线的解析式为y=x2x(2)证明:设直线AF的解析式为y=kx+m,将点A(1,1)代入y=kx+m中,即k+m=1,k=m1,直线AF的解析式为y=(m1)x+m联立直线AF和抛物线解析式成方程组,解得:,点G的坐标为(2m,2m2m)GHx轴,点H的坐标为(2m,0)抛物线的解析式为y=x2x=x(x1),点E的坐标为(1,0)设直线AE的解析式为y=k1x+b1,将A(1,1)、E(1,0)代入y=k1x+b1中,解得:,直线AE的解析式为y=x+设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,解得:,直线FH的

33、解析式为y=x+mFHAE(3)设直线AB的解析式为y=k0x+b0,将A(1,1)、B(4,6)代入y=k0x+b0中,解得:,直线AB的解析式为y=x+2当运动时间为t秒时,点P的坐标为(t2,t),点Q的坐标为(t,0)当点M在线段PQ上时,过点P作PPx轴于点P,过点M作MMx轴于点M,则PQPMQM,如图2所示www-2-1-cnjy-comQM=2PM,=,QM=,MM=t,点M的坐标为(t, t)又点M在抛物线y=x2x上,t=(t)2(t),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t4,2t),点M在抛物线y=x2x上,2t=(t4)2(t4),解得:t=综上所述:当运动时间为秒、秒、秒或秒时,QM=2PM2017年7月21日

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁