《2018年六年级数学总复习知识点归纳.docx》由会员分享,可在线阅读,更多相关《2018年六年级数学总复习知识点归纳.docx(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2018年六年级数学总复习知识点归纳班级学号姓名 六年级数学总复习重要知识点常用的数量关系式1、每份数份数总数 总数每份数份数 总数份数每份数2、速度时间路程 路程速度时间 路程时间速度3、单价数量总价 总价单价数量 总价数量单价4、工作效率工作时间工作总量 工作总量工作效率工作时间 工作总量工作时间工作效率 工作总量工作效率和=合作时间5、加数加数和 和一个加数另一个加数6、被减数减数差 被减数差减数 差减数被减数7、因数因数积 积一个因数另一个因数8、被除数除数商 被除数商除数 商除数被除数 小学数学图形计算公式1、正方形 (C:周长 S:面积 a:边长 ) 周长边长4 C=4a 面积=边
2、长边长 S=aa2、正方体 (V:体积 a:棱长 ) 表面积=棱长棱长6 S表=aa6 体积=棱长棱长棱长 V=aaa3、长方形( C:周长 S:面积 a:边长 ) 周长=(长+宽)2 C=2(a+b) 面积=长宽 S=ab4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高) (1)表面积(长宽+长高+宽高)2 S=2(ab+ah+bh) (2)体积=长宽高 V=abh5、三角形 (s:面积 a:底 h:高) 面积=底高2 s=ah2 三角形高=面积 2底 三角形底=面积 2高6、平行四边形 (s:面积 a:底 h:高) 面积=底高 s=ah7、梯形 (s:面积 a:上底 b:下底 h
3、:高) 面积=(上底+下底)高2 s=(a+b) h28、圆形 (S:面积 C:周长 d=直径 r=半径)(1)周长=直径=2半径 C=d=2r(2)面积=半径半径9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长高=ch(2r或d) (2)表面积=侧面积+底面积2(3)体积=底面积高 (4)体积侧面积2半径10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积高311、总数总份数平均数12、和差问题的公式 (和差)2大数 (和差)2小数13、和倍问题和(倍数1)小数小数倍数大数 (或者 和小数大数)14、差倍问题差(倍数1)小数
4、 小数倍数大数 (或 小数差大数)15、相遇问题相遇路程速度和相遇时间相遇时间相遇路程速度和速度和相遇路程相遇时间16、利润与折扣问题利润售出价成本利润率利润成本100%(售出价成本1)100%利息本金利率时间利率利息本金时间常用单位换算长度单位换算:1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米面积单位换算:1平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米体(容)积单位换算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立
5、方米=1000升重量单位换算:1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算:1元=10角 1角=10分 1元=100分时间单位换算:1世纪=100年 1年=12月1日=24小时 1时=60分 1分=60秒大月(31天)有:135781012月 小月(30天)的有:46911月平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 进率【单位换算】高级单位 低级单位进率低级单位 高级单位100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。常用各值
6、结果: = 3.14 2 = 6.28 3 = 9.42 4 = 12.56 5 = 15.7 6 = 18.84 7 = 21.98 8 = 25.12 9 = 28.26 10 = 31.4 12 = 37.68 15 = 47.1 16 = 50.24 18 = 56.52 25 = 78.5常见的分数与小数、百分数之间的互化 = 0.5 = 50% = 0.2 = 20% = 0.625 = 62.5% = 0.25 = 25% = 0.4 = 40% = 0.125 = 12.5% = 0.75 = 75% = 0.6 = 60% = 0.375 = 37.5% = 0.8 = 80
7、% = 0.875 = 87.5% = 0.04 = 4 = 0.08 = 8 = 0.12 = 12 = 0.16 = 16 = 0.24 = 24 = 0.02 = 2 0.167 = 16.7 0.333 = 33.3 0.667= 66.7基础知识第一章 数和数的运算 一 概念 (一)整数 1 、整数的意义 自然数和0都是整数。 2 、自然数 我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。 一个物体也没有,用0表示。0也是自然数。 3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
8、 4 、数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5、数的整除(被除数、除数和商都是自然数,并且没有余数。) 整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。 如果数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a的因数(或a的因数)。倍数和因数是相互依存的。 找因数的方法:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的倍数的个数是无限的,最小的倍数是它本身。6、自然数按能不能被2整除来分:奇数 偶数 奇数:不能被2整除的数偶数:能被2整除的数。最小的奇数是1,最小的偶数是0. 个位上是0
9、,2,4,6,8的数都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。3、自然数按因数的个数来分:质数、合数、1. 质数:有且只有两个因数,1和它本身合数:至少有三个因数,1、它本身、别的因数1: 只有1个因数。“1”既不是质数,也不是合数。 最小的质数是2,最小的合数是4。 20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、8
10、3、89、974、分解质因数 用短除法分解质因数 (一个合数写成几个质数相乘的形式)5、公因数、最大公因数 几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。 两数互质的特殊情况: 1和任何自然数互质;相邻两个自然数互质; 两个质数一定互质;2和所有奇数互质; 质数与比它小的合数互质;如果两数是倍数关系时,那么较小的数就是它们的最大公因数。如果两数互质时,那么1就是它们的最大公因数。6、公倍数、最小公倍数 几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它
11、们的最小公倍数。用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。如果两数互质时,那么它们的积就是它们的最小公倍数。(二)小数 1 、小数的意义 把整数1平均分成10份、100份、1000份 得到的十分之几、百分之几、千分之几 可以用小数表示。 一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几 一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数
12、叫做小数部分。 在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。2、小数的分类 纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。 带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。 有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。 无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 3.1415926 无限不循环小数:一个数的小数部分,数字排列无规律且位数
13、无限,这样的小数叫做无限不循环小数。 例如: 循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 0.0333 12.109109 一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 的循环节是“ 9 ” , 0.5454 的循环节是“ 54 ” 。 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 0.5656 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 0.03333 写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,
14、并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有一个数字,就只在它的上面点一个点。例如: 3.777 简写作 0.5302302 简写作 。 (三)分数 1、 分数的意义 把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。 在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。 把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2 、分数的分类 真分数:分子比分母小的分数叫做真分数。真分数小于1。 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
15、 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3、 约分和通分 把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。分子分母是互质数的分数,叫做最简分数。 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。(四)百分数 1、百分数的意义:表示一个数是另一个数的百分之几。也叫百分率或百分比。2、百分数和分数的主要联系与区别:、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。、百分数可以看作分母是100的分数,但百分数通常不写成分数形式,而在原来分子后面加上“”
16、来表示。百分数的分子可以是整数,也可以是小数;二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号。 (二)百分数的和分数的互化1、百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。2、分数化成百分数: 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。倒数1、倒数的意义: 乘积是1的两个数互为倒数。强调:互为倒数,即倒数是两个数的
17、关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。(4)、求小数的倒数: 把小数化为分数,再求倒数。(5)用1直接除以这个数3、1的倒数是1; 0没有倒数。 因为11=1;0乘任何数都得0,(分母不能为0)4、 对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是; 5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。比的意义1、比的意义:两个数相除又叫做两个数的比。2、在两个数的
18、比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如 15 :10 = 1510= (比值通常用分数表示,也可以用小数或整数表示)3、比可以表示两个相同量的关系,即倍数关系。如甲数是乙数的2倍,可以说甲数和乙数的比2:1;也可以表示两个不同量的比,得到一个新量。例: 路程速度=时间。4、比和除法、分数的联系: 比前 项比号“:”后 项比值除 法被除数除号“”除 数商分 数分 子分数线“”分 母分数值5、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数
19、同时乘或除以相同的数(0除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。3、根据比的基本性质,可以把比化成最简单的整数比。4.化简比:两个整数比:用比的前项和后项同时除以它们的最大公因数。两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。两个小数的比:向右移动小数点的位置,先化成整数比再化简。5按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。注意:要分
20、配的数量一定要是比中相对应两个数量的和。如长方形的周长、长方体的棱长总和、平均数等都不是对应比各部分量的和6、工程问题:假设工作总量为1,工作效率用完成时间分之一来表示,根据:工作时间=工作总量工作效率 进行计算二、 方法(一)数的读法和写法(略)(二)数的改写 一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。 1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 12 5430 0000 改写成以万做单位的数是 125430 万;改写成 以
21、亿做单位 的数 12.543 亿。 2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 13 0249 0015 省略亿后面的尾数是 13 亿。 3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 47 2509 7420 亿后面的尾数约是 47 亿。 4. 大小比较 (1). 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位
22、上的数相同,就看下一位,哪一位上的数大那个数就大。 (2). 比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大 (3). 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。 (三)数的互化 1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。 2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留两位
23、小数。 3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。 4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。 5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。 7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。(四)数的整除 1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再
24、把除数和商写成连乘的形式。 2. 求几个数的最大公因数的方法是:先用这几个数的公因数连续去除,一直除到所得的商只有公因数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公因数。 3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公因数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。 4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公因数只有1时,这两个合数互质。 (五) 约分和通分 约分的方法:用分子和分母的公因数(1除外)去除
25、分子、分母;通常要除到得出最简分数为止。通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。三 性质和规律(一) 商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。 (二)小数的性质 小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。 (三)小数点位置的移动引起小数大小的变化 1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍 2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点
26、向左移动三位,原来的数就缩小1000倍 3. 小数点向左移或者向右移位数不够时,要用“0补足位。 (四)分数的基本性质 分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。 (五)分数与除法的关系 1. 被除数除数= 被除数/除数 2. 因为零不能作除数,所以分数的分母不能为零。 3. 被除数 相当于分子,除数相当于分母。四 运算的意义(一) 整数四则运算1、整数加法:把两个数合并成一个数的运算叫做加法。加数+加数=和 一个加数=和另一个加数2整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。被减数是总数,减数和差分别是部分数。加法和减法互为
27、逆运算。3、整数乘法:求几个相同加数的和的简便运算叫做乘法。一个因数 一个因数 =积 一个因数=积另一个因数4、 整数除法: 已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。乘法和除法互为逆运算。 在除法里,0不能做除数。因为0和任何数相乘都得0, 被除数除数=商 除数=被除数商 被除数=商除数(二)小数四则运算1. 小数加法:小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。2. 小数减法:小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.3. 小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;
28、一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几是多少。4. 小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。5. 乘方:求几个相同因数的积的运算叫做乘方。例如 3 3(三)分数四则运算1. 分数加法:分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。2. 分数减法:分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。3. 分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。4. 乘积是1的两个数叫做互为倒数。5. 分数除法:分数除法的意义与整数除
29、法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。(四)运算定律1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。3. 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即ab=ba。4. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(ab)c=a(bc) 。5. 乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数
30、相乘再把两个积相加,即(a+b)c=ac+bc 。6. 减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。(五)运算法则1. 整数加法计算法则:2. 整数减法计算法则:3. 整数乘法计算法则:4. 整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。5. 小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补
31、足。6. 除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。7. 除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。8. 同分母分数加减法计算方法:同分母分数相加减,只把分子相加减,分母不变。9. 异分母分数加减法计算方法:先通分,然后按照同分母分数加减法的的法则进行计算。10. 带分数加减法的计算方法:整数部分和分数部分分别相加减,再把所得的数合并起来。11. 分数乘法的计算法则:分数乘整数,用
32、分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。12. 分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。(六) 运算顺序1. 小数四则运算的运算顺序和整数四则运算顺序相同。2. 分数四则运算的运算顺序和整数四则运算顺序相同。3. 没有括号的混合运算:同级运算从左往右依次运算;两级运算 先算乘、除法,后算加减法。4. 有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。5. 第一级运算:加法和减法叫做第一级运算。6. 第二级运算:乘法和除法叫做第二级运算。五 应用(一)整数和小数的应用1 简单应用题(1)简单应
33、用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。(2) 解题步骤:a、 审题理解题意:b、选择算法和列式计算:从题目中告诉什么,要求什么,要注意什么着手,进行解答并标明正确的单位名称。C、检验:检查看所列算式和计算过程是否正确,是否符合题意。2、百分数乘、除法问题百分数应用题与分数应用题数量关系和解题方法完全相同。关键要找准单位“1”.求百分之几的百分数问题1、求一个数是另一个数的的百分之几的问题:用“一个数另一个数”例如“8是5的百分之几?”用85.2、求一个数比另一个数多或者少百分之几的问题:用“相差数单位1” 例如“8比5多百分之几?”用(8-5)5.;5比8
34、少百分之几?用(8-5)8 【注意:不管是求百分之几或是多(少)百分之几,单位1都作除数】百分数乘法问题:单位1已知1、求一个数的百分之几是多少的问题:用单位“1”的量分率=分率对应量例如:求120千克的80%是多少?用12080%2、求比一个数多百分之几的数是多少的问题:用单位“1”的量(1+分率)=相比较的量。例如:一个数比20多25%,求这个数?用20(1+25%)3、求比一个数少百分之几的数是多少的问题:用单位“1”的量(1-分率)=相比较的量。例如:一个数比20少25%,求这个数?用20(1-25%)百分数除法应用题:单位“1”未知1、已知一个数的百分之几是多少,求这个数的问题:用相
35、比较的数量分率=单位1的量。例如:一个数的20%是15,求这个数?用1520%2、已知比一个数多百分之几的数是多少,求这个数的问题:用相比较的数量(1+分率)=单位1的量。例如:比一个数多20%的数是15,求这个数?用15(1+20%)3、已知比一个数少百分之几的数是多少,求这个数的问题:用相比较的数量(1-分率)=单位1的量。例如:比一个数少20%的数是15,求这个数?用15(1-20%)补充内容:1、 商店有时降价出售商品,叫做打折扣出售,通称“打折”。几折就表示十分之几,也就是百分之几十。2、 农业收成,经常用“成数”来表示。“一成”是十分之一,改写成百分数就是10,“二成”是十分之二,
36、改写成百分数就是20,“三成五”就是二分之三点五,改写成百分数就是35。3、典型应用题具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。(1)平均数问题:平均数是等分除法的发展。解题关键:在于确定总数量和与之相对应的总份数。平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和数量的个数=平均数。(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。数量关系式:单一量份数=总数量 总数量单一量=份数例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930
37、 米,需要多少天?分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ( 477 4 31 ) =45 (天)(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。数量关系式:单位数量个数另一个单位数量 = 另一个单位数量例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 6 4=120
38、0 (米)(4)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。解题规律:(和差)2 = 大数 大数差=小数(和差)2=小数 和小数= 大数例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 12 ,由此得到现在的乙班是( 9 4 12 ) 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 87=7 (人)(5)和倍问题:已知两个数的
39、和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。解题规律:和倍数和=标准数 标准数倍数=另一个数例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。列式为( 115-7 )( 5+1 ) =18 (辆), 18 5+7=97 (辆)(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。解题规律:两个数的差(倍数1 )= 标准数 标准数倍数=另一个数。例 甲
40、乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )( 3-1 ) =17 (米)乙绳剩下的长度, 17 3=51 (米)甲绳剩下的长度, 29-17=12 (米)剪去的长度。(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、速度和、速度差等概念,了解他们之间的关系,再根
41、据这类问题的规律解答。解题关键及规律:同时同地相背而行:路程=速度和时间。同时相向而行:相遇时间=速度和时间(8)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。解题规律:沿线段植树棵树=段数+1 棵树=总路程株距+1株距=总路程(棵树-1) 总路程=株距(棵树-1)沿周长植树棵树=总路程株距株距=总路程棵树总路程=株距棵树例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201
42、根。求改装后每相邻两根的间距。分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ( 301-1 )( 201-1 ) =75 (米)(12)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。 解题关键:年龄问题与和差、和倍、差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为