《山东省滨州市滨城区2020年初中学生学业水平模拟考试数学试题.doc》由会员分享,可在线阅读,更多相关《山东省滨州市滨城区2020年初中学生学业水平模拟考试数学试题.doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、滨城区2020年初中学生学业水平模拟考试数学试题(考试时间:120分钟 满分:150分)第卷(选择题 共36分)1、 选择题(本大题共12个小题,在每个小题的四个选项中只有一个是正确的,请把正确的选)1下列各数中,负数是 ( )A(1) B2 C(3)-2 D()02下列运算正确 的是 ( )Aa2+a3=a5 Baa2 =a2 Ca3a2=a D(3a2)2=6a43如图,直线,点在直线上,且.若1=40,那么2等于 () A45B50C55D604.如图是由5个完全相同的小正方体构成的几何体,若将小正方体M放到小正方体N的正上方,则关于它的视图,说法正确的是 ()A主视图会发生改变B俯视图
2、会发生改变C左视图会发生改变D三种视图都会发生改变5如图,已知一个斜边长为2的直角三角板的直角顶点与原点重合,两直角边分别落在两个坐标轴上现将该三角板向右平移使点A与点O重合,得到OCB,则点B的对应点B的坐标是( ) A(1,0)B(,)C(1,)D(1,) 第3题图 第4题图 第5题图 6. 如图,以ABC的BC边为直径的O,与AB、AC两边分别交于M、N两点,如果MON40,那么A的度数为 ( )A.60B.70C.80D.907.计算的结果是 ( ) A-13m6-16 B-13m6+16 C-17m6+16 D-12m6-m9+168当b+c3时,关于x的一元二次方程2x2+bxc的
3、根的情况为 ()A有两个不相等的实数根B有两个相等的实数根C没有实数根D无法确定9.在平面直角坐标系中,点A的坐标为(1,),以原点为中心,将点A顺时针旋转30得到点A,则点A的坐标为 ()A(,1)B(,1)C(2,1)D(0,210. 在RtABC中,ACB=90,CDAB于D,CE平分ACD交AB于E,则下列结论一定成立的是 ABC=EC BEC=BE CBC=BE DAE=EC ( ) 第6题图 第9题图 第10题图11. 如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且EOF90,OC、EF交于点G给出下列结论:COEDOF
4、;OGEFGC;四边形CEOF的面积为正方形ABCD面积的;DF2+BE2OGOC其中正确的是 ( )A. B C D12. 如图,平面直角坐标系中,A(8,0),B(8,4),C(0,4),反比例函数y的图象分别与线段AB,BC交于点D,E,连接DE若点B关于DE的对称点恰好在OA上,则k ()A.20 B16 C12 D8第11题图 第12题图第卷(非选择题 共114分)二、填空题(本大题共8个小题,每小题5分,共40分)13计算:=_14方程的解是_ 15.一组数据2,3,x,4的众数与中位数相等,则这组数据的方差是_16.在平面直角坐标系中,ABC的顶点坐标分别是A(6,8),B(7,
5、0),C(7,8)以原点O为位似中心,相似比为,把ABC缩小,得到A1B1C1,则点A的对应点A1的坐标为 .17.圆内接正六边形的边心距为2,则此圆内接正三角形的边长是 .18.如图所示,一次函数yax+b(a、b为常数,且a0)的图象经过点A(4,1),则不等式ax+b1的解集为 19.如图,先有一张矩形纸片ABCD,AB4,BC8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM下列结论:CQCD; 四边形CMPN是菱形;P,A重合时,MN2; PQM的面积S的取值范围是3S5其中正确的是 (
6、把正确结论的序号都填上) 第18题图 第19题图20.如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF如图1,当CDAC时,tan1;如图2,当CDAC时,tan2;如图3,当CDAC时,tan3;依此类推,当CDAC(n为正整数)时,tann 2、 解答题(本大题共6个小题,满分74分.解答时请写出必要的演推过程)21先化简,再求值:,其中x是不等式组的整数解22某学校组织外出研学活动,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的
7、载客量和租金如表所示:甲型客车乙型客车载客量(人/辆)3530租金(元/辆)400320学校计划本次研学活动的租金总费用不超过3000元,为了保证安全,每辆客车上至少要有2名老师(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为_辆;(3)学校共有几种租车方案?最少租车费用是多少?23.2019年4月23日是第二十四个“世界读书日“某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)
8、求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率24.如图,线段AB8,射线BGAB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使EAPBAP,直线CE与线段AB相交于点F(点F与点A、B不重合)(1)求证:AEPCEP;(2)判断CF与AB的位置关系,并说明理由;(3)求AEF的周长 25.如图,点M在O的直径AB的延长线上, C是O上一点,且MC2MBMA(1)求证:MC是O的切线;(2)已知MC20
9、,MB10,点D是AB的中点,DEAC,垂足为E,DE交AB于点F,求EF的长 26如图,在平面直角坐标系中,已知抛物线yx2x4与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求直线BC的解析式(2)点P是线段BC下方抛物线上的一个动点求四边形PBAC面积的最大值,并求四边形PBAC面积的最大时P点的坐标。如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形求点Q的坐标 2020年初中学生学业水平模拟考试数学试题答案及评分标准题号123456789101112答案BCBACBCAACBC1、 选择题(每题3分,共36分)2、 填空题(每题5分,共40分)13
10、. 714. x215. 16. (3,4)或(-3,-4)17.418.x419.20.3、 解答题(共6小题,共74分)21.(10分)解:原式3x+3-x+1=2x+4, .5分 解不等式组得-3x1,则不等式组的整数解为1、0、-1、-2,又x1且x0,x-2,所以原式=0 .10分22. (12分)解:(1)设参加此次研学活动的老师有x人,学生有y人,依题意,得:,解得:答:参加此次研学活动的老师有16人,学生有234人 .3分(2)(234+16)357(辆)5(人),1628(辆),租车总辆数为8辆故答案为:8。 .6分(3)设租甲型客车m辆,则需租乙型客车(8m)辆,依题意,得
11、:,解得:2m5m为正整数,m2,3,4,5,共有4种租车方案 .9分设租车总费用为w元,则w400m+320(8m)80m+2560,800,w的值随m值的增大而增大,当m2时,w取得最小值,最小值为2720学校共有4种租车方案,最少租车费用是2720元 .12分 23.(12)【解答】解:(1)本次比赛获奖的总人数为410%40(人), .2分二等奖人数为40(4+24)12(人),补全条形图如下: .4分(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360108;.8分(3)树状图如图所示,从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,抽取两人恰好是甲和乙的概率是 .
12、12分4.(13分)证明:(1)四边形APCD正方形,DP平分APC,PCPA,APDCPD45,EP=EPAEPCEP(SAS); .3分(2)CFAB,理由如下:AEPCEP,EAPECP,EAPBAP,BAPFCP,FCP+CMP90,AMFCMP,AMF+PAB90,AFM90,CFAB; .8分(3)过点 C 作CNPBCFAB,BGAB,FCBN,CPNPCFEAPPAB,又APCP,PCNAPB(AAS),CNPBBF,PNAB,AEPCEP,AECE,AE+EF+AFCE+EF+AFBN+AFPN+PB+AFAB+CN+AFAB+BF+AF2AB16 .13分25. (13分)
13、解:(1)证明:连接OC,如图所示:MC2MBMA,即,MM,MBCMCA,MCBMAC,AB为O的直径,ACB90,A+ABC90,OCOB,OBCOCB,MCB+OCB90,即OCMC,MC是O的切线; .5分(2)解:连接OD,如图所示:MC20,MB10,MC2MBMA,MA=40ABMAMB30,MBCMCA,=2,设BCx,则AC2x,在RtABC中,x2+(2x)2302,解得:x65,即BC65, .8分点D是AB的中点,AB为O的直径,AOD90,DEAC,AEF90,ACB90,DEBC,DFOABC,DOFACB,OFOD=BCAC=12,OF=12OD=152,即AF=
14、152, .11分EFBC,EFBC=AFAB=14,EF=14BC=352 .13分26.解:(1)抛物线的表达式为:y=12x2x4,令y0,则x4或2,即点A、B的坐标分别为(2,0)、(4,0);x=0时,y=-4,即C点坐标(0,-4)。由待定系数法得直线BC的解析式为:y=x-4. .4分(2)如图,过P作x轴的垂线交直线BC于点N,连接PC,PB.设P(x,x2x4),N(x,x-4).PN=x-4-(x2x4)=-x2+2x当x=2时,PN有最大值为2.此时P坐标为(2,-4).则=PNOB=24=4所以,四边形PBAC面积最大值=12+4=16 .8分 第一种情况:当BC是平行四边形的一条边时,如图所示,点C向右平移4个单位、向上平移4个单位得到点B,设:点P(n,12n2n4),点Q(m,0),则点P向右平移4个单位、向上平移4个单位得到点Q,即:n+4m,12n2n4+40,解得:m4或6(舍去4),即点Q(6,0); .11分第二种情况:当BC是平行四边形的对角线时,设点P(m,n)、点Q(s,0),其中n=12m2m4,由中心公式可得:m+s2,n+04,解得:s2或4(舍去4),故点Q(2,0);故点Q的坐标为(2,0)或(6,0); .14分