《2020年广东省茂名市高州市七校联考中考数学模拟试卷(4月份)(解析版).doc》由会员分享,可在线阅读,更多相关《2020年广东省茂名市高州市七校联考中考数学模拟试卷(4月份)(解析版).doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2020年广东省茂名市高州市七校联考中考数学模拟试卷(4月份)一选择题(共10小题)1响应党中央号召,连日来,全国广大共产党员继续踊跃捐款,表达对新冠肺炎疫情防控工作的支持据统计,截至3月10日,全国已有7436万多名党员自愿捐款,共捐款76.8亿元,则76.8亿元用科学记数法可表示为()A7.68109元B7.681010元C76.8108元D0.7681010元2如图,四个图标分别是剑桥大学、北京大学、浙江大学和北京理工大学的校徽的重要组成部分,其中是轴对称图形但不是中心对称图形的是()ABCD3某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面
2、上的汉字是()A青B春C梦D想4某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()ABCD5在下列四个实数中,最大的数是()AB0C21D6要使式子在实数范围内有意义,则实数x的取值范围是()Ax1Bx1Cx1且x2Dx17下列计算正确的是()A+B7m4m3Ca5a3a8D(a3)2a98如图是某商场一楼与二楼之间的手扶电梯示意图,其中AB、CD分别表示一楼、二楼地面的水平线,ABC150,如果顾客乘地铁从点B到点C上升的高度为5m,则电梯BC的长是()A5cmB5cmC10mDm9如图,在O中,OAAB,OCAB,则下列结论错误的是()
3、AOAB是等边三角形BOC平分弦ABCBAC30D弦AC的长等于圆内接正十二边形的边长10生命一号公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x根据题意列方程,则下列方程正确的是()A2500(1+x)29100B2500+2500(1+x)+2500(1+x)29100C2500(1+x%)29100D2500(1+x)+2500(1+x)29100二填空题(共7小题)11已知x1是方程x2+bx20的一个根,则方程的另一个根是 12如图,已知ABCD,ABAC,ABC68,则ACD 13若x2+2(3m)x+25
4、可以用完全平方式来分解因式,则m的值为 14如图所示,直线ykx+b经过点(2,0),则关于x的不等式kx+b0的解集为 15已知一个多边形的内角和与外角和之比是3:2,则这个多边形的边数为 16观察下列等式:701,717,7249,73343,742401,7516807,根据其中的规律可得70+71+72+72019的结果的个位数字是 17已知抛物线yax2+bx+c(a0)的对称轴是直线x1,其部分图象如图所示,下列说法中:abc0;ab+c0;3a+c0;当1x3时,y0,正确的是 (填写序号)三解答题(共8小题)18先化简代数式1,并从1,0,1,3中选取一个合适的数代入求值192
5、018年8月中国铁路总公司宣布,京津高铁将再次提速,担任此次运营任务是最新的复兴号动车组,提速后车速是之前的1.5倍,100千米缩短了10分钟,问提速前后的速度分别是多少千米与小时?20如图,一次函数yx+3的图象与反比例函数y(k0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C(1)求反比例函数的解析式;(2)若点P在x轴上,且APC的面积为5,求点P的坐标21某商场从厂家批发电视机进行零售,批发价格与零售价格如下表:电视机型号甲乙批发价(元/台)15002500零售价(元/台)20253640若商场购进甲、乙两种型号的电视机共50台,用去9万元(1)求商场购进甲、乙型号的电视机
6、各多少台?(2)迎“国庆”商场决定进行优惠促销:以零售价的七五折销售乙种型号电视机,两种电视机销售完毕,商场共获利8.5%,求甲种型号电视机打几折销售?22为了减少雾霾的侵状,某市环保局与市委各部门协商,要求市民在春节期间禁止燃放烟花爆竹,为了征集市民对禁燃的意见,政府办公室进行了抽样调查,调查意见表设计为:“满意“一般”无所谓”反对”四个选项,调查结果汇总制成如下不完整的统计图,请根据提供的信息解答下面的问题(1)参与问卷调查的人数为 (2)扇形统计图中的m ,n 补全条形统计图;(3)若本市春节期间留守市区的市民有32000人,请你估计他们中持“反对”意见的人数23永嘉某商店试销一种新型节
7、能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y2x+100(利润售价进价)(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?(3)物价部门规定,这种节能灯的销售单价不得高于30元若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?24如图,在ABC中,ABAC,以AB为直径的O分别交BC于点D,交CA的延长线于点E,过点D作DHAC,垂足为点H,连接DE,交AB于点F(1)求证:DH是O的切线;(2)若O的半径为4,AEF
8、E时,求的长(结果保留)25如图1,在矩形ABCD中,BC3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作PAB关于直线PA的对称PAB,设点P的运动时间为t(s)(1)若AB2如图2,当点B落在AC上时,显然PAB是直角三角形,求此时t的值;是否存在异于图2的时刻,使得PCB是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由(2)当P点不与C点重合时,若直线PB与直线CD相交于点M,且当t3时存在某一时刻有结论PAM45成立,试探究:对于t3的任意时刻,结论“PAM45”是否总是成立?请说明理由 参考答案与试题解析一选择题(共10小题)1响应党中央号召
9、,连日来,全国广大共产党员继续踊跃捐款,表达对新冠肺炎疫情防控工作的支持据统计,截至3月10日,全国已有7436万多名党员自愿捐款,共捐款76.8亿元,则76.8亿元用科学记数法可表示为()A7.68109元B7.681010元C76.8108元D0.7681010元【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【解答】解:76.8亿元7680000000元7.68109元故选:A2如图,四个图标分别是剑桥大学、北京大学、浙江
10、大学和北京理工大学的校徽的重要组成部分,其中是轴对称图形但不是中心对称图形的是()ABCD【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:A、看起来像轴对称图形但不是轴对称图形,也不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意;故选:B3某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是()A青B春C梦D想【分析】根据正方体展开z字型和I型找对面的方法即可求解;【解答】解:展开图中“点”与“春”是对面
11、,“亮”与“想”是对面,“青”与“梦”是对面;故选:B4某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()ABCD【分析】随机事件A的概率P(A)事件A可能出现的结果数所有可能出现的结果数【解答】解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率P,故选:D5在下列四个实数中,最大的数是()AB0C21D【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可【解答】解:1.414,21,0,最大的数是21故选:C6要使式子在实数范围内有意义,则实数x的取值范围
12、是()Ax1Bx1Cx1且x2Dx1【分析】直接利用二次根式有意义的条件分析得出答案【解答】解:要使式子在实数范围内有意义,则x10,解得:x1故选:D7下列计算正确的是()A+B7m4m3Ca5a3a8D(a3)2a9【分析】直接利用二次根式的加减运算法则以及同底数幂的乘法运算法则以及积的乘方运算法则计算得出答案【解答】解:A、+无法计算,故此选项错误;B、7m4m3m,故此选项错误;C、a5a3a8,正确;D、(a3)2a6,故此选项错误;故选:C8如图是某商场一楼与二楼之间的手扶电梯示意图,其中AB、CD分别表示一楼、二楼地面的水平线,ABC150,如果顾客乘地铁从点B到点C上升的高度为
13、5m,则电梯BC的长是()A5cmB5cmC10mDm【分析】根据直角三角形中30所对的边等于斜边的一半,进而得出即可【解答】解:如图所示:过点C作CEAB延长线于点E,ABC150,CBE30,从点B到点C上升的高度为5m,电梯BC的长是10m故选:C9如图,在O中,OAAB,OCAB,则下列结论错误的是()AOAB是等边三角形BOC平分弦ABCBAC30D弦AC的长等于圆内接正十二边形的边长【分析】根据正多边形的性质和圆的相关概念对四个选项逐一进行分析【解答】解:A、OAOB,OAAB,OAOBAB,ABO为等边三角形,故A正确;B、OAAB,OCAB,OC平分弦AB;故B正确;C、根据圆
14、周角定理,圆周角的度数等于它所对的圆心角的度数的一半,BACBOCBOA6015,故C错误D、因为OCAB,根据垂径定理可知,;再根据A中结论,弦AC的长等于圆内接正十二边形的边长,故D正确;故选:C10生命一号公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x根据题意列方程,则下列方程正确的是()A2500(1+x)29100B2500+2500(1+x)+2500(1+x)29100C2500(1+x%)29100D2500(1+x)+2500(1+x)29100【分析】设该公司5、6两月的营业额的月平均增长率为x,
15、根据计划第二季度的总营业额达到9100万元,即可得出关于x的一元二次方程,此题得解【解答】解:设该公司5、6两月的营业额的月平均增长率为x,依题意,得:2500+2500(1+x)+2500(1+x)29100故选:B二填空题(共7小题)11已知x1是方程x2+bx20的一个根,则方程的另一个根是2【分析】根据根与系数的关系得出x1x22,即可得出另一根的值【解答】解:x1是方程x2+bx20的一个根,x1x22,1x22,则方程的另一个根是:2,故答案为212如图,已知ABCD,ABAC,ABC68,则ACD44【分析】根据等腰三角形两底角相等求出BAC,再根据两直线平行,内错角相等解答【解
16、答】解:ABAC,ABC68,BAC18026844,ABCD,ACDBAC44故答案为:4413若x2+2(3m)x+25可以用完全平方式来分解因式,则m的值为2或8【分析】利用完全平方公式的特征判断即可求出m的值【解答】解:x2+2(3m)x+25可以用完全平方式来分解因式,2(3m)10解得:m2或8故答案为:2或814如图所示,直线ykx+b经过点(2,0),则关于x的不等式kx+b0的解集为x2【分析】结合函数图象,写出直线在x轴下方所对应的自变量的范围即可【解答】解:直线ykx+b经过点(2,0),当x2时,y0,关于x的不等式kx+b0的解集为x2故答案为x215已知一个多边形的
17、内角和与外角和之比是3:2,则这个多边形的边数为5【分析】设这个多边形的边数为n,依据多边形的内角和与外角和之比是3:2,即可得到n的值【解答】解:设这个多边形的边数为n,依题意得:(n2)180360,解得n5故这个多边形的边数为5故答案为:516观察下列等式:701,717,7249,73343,742401,7516807,根据其中的规律可得70+71+72+72019的结果的个位数字是0【分析】由701,717,7249,73343,742401,7516807,得出规律个位数4个数一循环,由1+7+9+320,(2019+1)4505,即可得出结果【解答】解:701,717,7249
18、,73343,742401,7516807,个位数4个数一循环,4个数一循环的个位数的和:1+7+9+320,(2019+1)4505,70+71+72+72019的结果的个位数字是0,故答案为:017已知抛物线yax2+bx+c(a0)的对称轴是直线x1,其部分图象如图所示,下列说法中:abc0;ab+c0;3a+c0;当1x3时,y0,正确的是(填写序号)【分析】首先根据二次函数图象开口方向可得a0,根据图象与y轴交点可得c0,再根据二次函数的对称轴x1,结合a的取值可判定出b0,根据a、b、c的正负即可判断出的正误;把x1代入函数关系式yax2+bx+c中得yab+c,再根据对称性判断出
19、的正误;把b2a代入ab+c中即可判断出的正误;利用图象可以直接看出的正误【解答】解:根据图象可得:a0,c0,对称轴:x1,b2a,a0,b0,abc0,故正确;把x1代入函数关系式yax2+bx+c中得:yab+c,由抛物线的对称轴是直线x1,且过点(3,0),可得当x1时,y0,ab+c0,故错误;b2a,a(2a)+c0,即:3a+c0,故正确;由图形可以直接看出正确故答案为:三解答题(共8小题)18先化简代数式1,并从1,0,1,3中选取一个合适的数代入求值【分析】根据分式的除法和减法可以化简题目中的式子,然后在1,0,1,3中选取一个使得原分式有意义的x的值代入即可解答本题【解答】
20、解:11,当x3时,原式192018年8月中国铁路总公司宣布,京津高铁将再次提速,担任此次运营任务是最新的复兴号动车组,提速后车速是之前的1.5倍,100千米缩短了10分钟,问提速前后的速度分别是多少千米与小时?【分析】设列车提速前的速度为x千米每小时和列车提速后的速度为1.5千米每小时,根据关键语句“100千米缩短了10分钟”可列方程,解方程即可【解答】解:设提速前后的速度分别为x千米每小时和1.5x千米每小时,根据题意得,解得:x200,经检验:x200是原方程的根,1.5x300,答:提速前后的速度分别是200千米每小时和300千米每小时20如图,一次函数yx+3的图象与反比例函数y(k
21、0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C(1)求反比例函数的解析式;(2)若点P在x轴上,且APC的面积为5,求点P的坐标【分析】(1)利用点A在yx+3上求a,进而代入反比例函数y(k0)求k即可;(2)设P(x,0),求得C点的坐标,则PC|3x|,然后根据三角形面积公式列出方程,解方程即可【解答】解:(1)把点A(1,a)代入yx+3,得a2,A(1,2)把A(1,2)代入反比例函数y,k122;反比例函数的表达式为y;(2)一次函数yx+3的图象与x轴交于点C,C(3,0),设P(x,0),PC|3x|,SAPC|3x|25,x2或x8,P的坐标为(2,0)或(8,
22、0)21某商场从厂家批发电视机进行零售,批发价格与零售价格如下表:电视机型号甲乙批发价(元/台)15002500零售价(元/台)20253640若商场购进甲、乙两种型号的电视机共50台,用去9万元(1)求商场购进甲、乙型号的电视机各多少台?(2)迎“国庆”商场决定进行优惠促销:以零售价的七五折销售乙种型号电视机,两种电视机销售完毕,商场共获利8.5%,求甲种型号电视机打几折销售?【分析】(1)设商场购进甲型号电视机x台,乙型号电视机y台,根据“商场购进甲、乙两种型号的电视机共50台,用去9万元”列出方程组并解答(2)设甲种型号电视机打a折销售,根据“两种电视机销售完毕,商场共获利8.5%”列出
23、方程并解答【解答】解:(1)设商场购进甲型号电视机x台,乙型号电视机y台,则解得答:商场购进甲型号电视机35台,乙型号电视机15台;(2)设甲种型号电视机打a折销售,依题意得:15(36400.752500)+35(20250.1a1500)(152500+351500)8.5%解得a8答:甲种型号电视机打8折销售22为了减少雾霾的侵状,某市环保局与市委各部门协商,要求市民在春节期间禁止燃放烟花爆竹,为了征集市民对禁燃的意见,政府办公室进行了抽样调查,调查意见表设计为:“满意“一般”无所谓”反对”四个选项,调查结果汇总制成如下不完整的统计图,请根据提供的信息解答下面的问题(1)参与问卷调查的人
24、数为200人(2)扇形统计图中的m45,n15补全条形统计图;(3)若本市春节期间留守市区的市民有32000人,请你估计他们中持“反对”意见的人数【分析】(1)根据持“一般”意见的人数除以其所占的百分比,可得答案;(2)用调查的总人数减去持“一般”“无所谓”“反对”三个选项的人数得到持“满意”意见的人数,补全条形图,用持“满意”意见的人数除以总人数求出m;用持“无所谓”意见的人数除以总人数求出n;(3)用本市春节期间留守市区的市民乘以样本中持“反对”意见的人数所占的百分比,可得答案【解答】解:(1)7035%200(人)故答案为200人;(2)持“满意”意见的人数为:20070103090(人
25、)补充条形统计图如图所示:m%45%,n%15%,则m45,n15故答案为:45;15;(3)样本中持“反对”意见的有10人,所占百分比为10200100%5%,5%320001600(人)答:本市春节期间留守市民中持“反对”意见的约有1600人23永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y2x+100(利润售价进价)(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?(3)物价部门规定,这种节能灯的销售单价不得
26、高于30元若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?【分析】(1)根据每轴的利润w(x18)y,再把y2x+100代入即可求出z与x之间的函数解析式,(2)根据利润的表达式,利用配方法可得出利润的最大值;(3)先得出销售利润的表达式,然后建立方程,解出即可得出销售单价;【解答】解:(1)w(x18)y(x18)(2x+100)2x2+136x1800,w与x之间的函数解析式为z2x2+136x1800(x18);(2)w2x2+136x18002(x34)2+512,当x34时,w取得最大,最大利润为512元答:当销售单价为34元时,厂商每周能获得最大利润,最大利润是
27、512元(3)周销售利润周销量(单件售价单件制造成本)(2x+100)(x18)2x2+136x1800,由题意得,2x2+136x1800350,解得:x125,x243,销售单价不得高于30元,x取25,答:销售单价定为25元时厂商每周能获得350万元的利润;24如图,在ABC中,ABAC,以AB为直径的O分别交BC于点D,交CA的延长线于点E,过点D作DHAC,垂足为点H,连接DE,交AB于点F(1)求证:DH是O的切线;(2)若O的半径为4,AEFE时,求的长(结果保留)【分析】(1)根据同圆的半径相等和等边对等角证明:ODBOBDACB,则DHOD,DH是圆O的切线;(2)根据等腰三
28、角形的性质的EAFEAF,设BC,得到EAFEFA2,根据三角形的内角和得到B36,求得AOD72,由弧长公式计算即可【解答】(1)证明:连接OD,如图所示:OBOD,ODB是等腰三角形,OBDODB,在ABC中,ABAC,ABCACB,由得:ODBOBDACB,ODAC,DHAC,DHOD,DH是O的切线;(2)解:AEEF,EAFEAF,设BC,EAFEFA2,EB,+2+2180,36,B36,AOD72,的长25如图1,在矩形ABCD中,BC3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作PAB关于直线PA的对称PAB,设点P的运动时间为t(s)(1)若AB2如图2,当
29、点B落在AC上时,显然PAB是直角三角形,求此时t的值;是否存在异于图2的时刻,使得PCB是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由(2)当P点不与C点重合时,若直线PB与直线CD相交于点M,且当t3时存在某一时刻有结论PAM45成立,试探究:对于t3的任意时刻,结论“PAM45”是否总是成立?请说明理由【分析】(1)利用勾股定理求出AC,由PCBACB,推出,即可解决问题分三种情形分别求解即可:如图21中,当PCB90时如图22中,当PCB90时如图23中,当CPB90时(2)如图32中,首先证明四边形ABCD是正方形,如图32中,利用全等三角形的性质,翻折不
30、变性即可解决问题【解答】解:(1)如图1中,四边形ABCD是矩形,ABC90,AC,PCBACB,PBCABC90,PCBACB,PB24tPB24如图21中,当PCB90时,四边形ABCD是矩形,D90,ABCD2,ADBC3,DB,CBCDDB,在RtPCB中,BP2PC2+BC2,t2()2+(3t)2,t2如图22中,当PCB90时,在RtADB中,DB,CB3在RtPCB中则有:,解得t6如图23中,当CPB90时,易证四边形ABP为正方形,易知t2综上所述,满足条件的t的值为2s或6s或2s(2)如图31中,PAM452+345,1+445又翻折,12,34,又ADMABM,AMAM,AMDAMB(AAS),ADABAB,即四边形ABCD是正方形,如图,设APBxPAB90x,DAPx,易证MDABAM(HL),BAMDAM,翻折,PABPAB90x,DABPABDAP902x,DAMDAB45x,MAPDAM+PAD45