初中数学北师大版九年级(下)第三章 单元测试卷1.doc

上传人:紫*** 文档编号:2960962 上传时间:2020-06-07 格式:DOC 页数:36 大小:659.08KB
返回 下载 相关 举报
初中数学北师大版九年级(下)第三章 单元测试卷1.doc_第1页
第1页 / 共36页
初中数学北师大版九年级(下)第三章 单元测试卷1.doc_第2页
第2页 / 共36页
点击查看更多>>
资源描述

《初中数学北师大版九年级(下)第三章 单元测试卷1.doc》由会员分享,可在线阅读,更多相关《初中数学北师大版九年级(下)第三章 单元测试卷1.doc(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、单元测试(一)一选择题1如图,四边形ABCD内接O,AC平分BAD,则下列结论正确的是()AAB=ADBBC=CDCDBCA=DCA2如图,CD为O的直径,弦ABCD,垂足为M,若AB=12,OM:MD=5:8,则O的周长为()A26 B13 C D3如图,AB是O的直径,弦CD交AB于点P,AP=2,BP=6,APC=30,则CD的长为()A B2 C2 D84如图,ABC内接于O,若A=,则OBC等于()A1802B2C90+D905如图,四边形ABCD为O的内接四边形延长AB与DC相交于点G,AOCD,垂足为E,连接BD,GBC=50,则DBC的度数为()A50 B60 C80 D906

2、在平面直角坐标系中,点O为坐标原点,点A、B、C的坐标分别为A(,0)、B(3,0)、C(0,5),点D在第一象限内,且ADB=60,则线段CD的长的最小值是()A22 B2 C2 D27下列说法中,正确的是()A三点确定一个圆 B三角形有且只有一个外接圆C四边形都有一个外接圆 D圆有且只有一个内接三角形8如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,2),则ABC外接圆的圆心坐标是()A(2,3)B(3,2)C(1,3)D(3,1)9在平面直角坐标系xOy中,经过点(sin45,cos30)的直线,与以原点为圆心,2为半径的圆的位置关系是()A相交B相切C相离D

3、以上三者都有可能10如图,菱形ABCD的边AB=20,面积为320,BAD90,O与边AB,AD都相切,AO=10,则O的半径长等于()A5 B6 C2 D311如图,P为O外一点,PA、PB分别切O于A、B,CD切O于点E,分别交PA、PB于点C、D,若PA=5,则PCD的周长为()A5B7C8D1012如图,AB是O的直径,点E为BC的中点,AB=4,BED=120,则图中阴影部分的面积之和为()A B2 C D1二、填空题13如图,CD是O的直径,弦ABCD于点H,若D=30,CH=1cm,则AB= cm14在AOB中,AB=OB=2,COD中,CD=OC=3,ABO=DCO连接AD、B

4、C,点M、N、P分别为OA、OD、BC的中点若A、O、C三点在同一直线上,且ABO=2,则= (用含有的式子表示);固定AOB,将COD绕点O旋转,PM最大值为 15如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d我们把圆上到直线l的距离等于1的点的个数记为m如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m= ;(2)当m=2时,d的取值范围是 16)如图,O的半径为6cm,B为O外一点,OB交O于点A,AB=OA,动点P从点A出发,以 cm/s的速度在O上按逆时针方向运动一周回到点A立即停止当点P运动

5、的时间为 时,BP与O相切17芸豆17(2017岳阳)我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率的近似值,设半径为r的圆内接正n边形的周长为L,圆的直径为d,如图所示,当n=6时,=3,那么当n=12时,= (结果精确到0.01,参考数据:sin15=cos750.259)三、解答题18如图,在RtAOB中,B=40,以OA为半径,O为圆心作O,交AB于点C,交OB于点D求的度数19如图,一面墙上有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接矩形,已知矩形的高AC=2米,宽CD=米(1)求此圆形门洞的半径;

6、(2)求要打掉墙体的面积20如图,有两条公路OM,ON相交成30,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁50米内会受到噪音影响,已知有两台相距30米的拖拉机正沿ON方向行驶,它们的速度均为5米/秒,问这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间是多少?21如图,AN是M的直径,NBx轴,AB交M于点C(1)若点A(0,6),N(0,2),ABN=30,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是M的切线22如图,直线AB、BC、CD分别与O相切于E、F、G,且ABCD,OB=6cm,OC=8cm求:(1)BOC的度

7、数;(2)BE+CG的长;(3)O的半径23如图,在O中,弦AB=弦CD,ABCD于点E,且AEEB,CEED,连结AO,DO,BD(1)求证:EB=ED(2)若AO=6,求的长24中国扇文化有着深厚的文化底蕴,是民族文化的一个组成部分,它与竹文化、佛教文化有着密切关系历来中国被誉为制扇王国扇子主要材料是:竹、木、纸、象牙、玳瑁、翡翠、飞禽翎毛、其它棕榈叶、槟榔叶、麦杆、蒲草等也能编制成各种千姿百态的日用工艺扇,造型优美,构造精制,经能工巧匠精心镂、雕、烫、钻或名人挥毫题诗作画,使扇子艺术身价倍增折扇,古称“聚头扇“,或称为撒扇,或折叠扇,以其收拢时能够二头合并归一而得名如图,折扇的骨柄OA的

8、长为5a,扇面的宽CA的长为3a,折扇张开的角度为n,求出扇面的面积(用代数式表示)答案与解析1如图,四边形ABCD内接O,AC平分BAD,则下列结论正确的是()AAB=ADBBC=CDCDBCA=DCA【考点】M4:圆心角、弧、弦的关系 【专题】选择题 【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可【解答】解:A、ACB与ACD的大小关系不确定,AB与AD不一定相等,故本选项错误;B、AC平分BAD,BAC=DAC,BC=CD,故本选项正确;C、ACB与ACD的大小关系不确定,与不一定相等,故本选项错误;D、BCA与DCA的大小关系不确定,故本选项错误故选B【点评】本题考查的是圆心

9、角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等2如图,CD为O的直径,弦ABCD,垂足为M,若AB=12,OM:MD=5:8,则O的周长为()A26B13CD【考点】M2:垂径定理 【专题】选择题 【分析】连接OA,根据垂径定理得到AM=AB=6,设OM=5x,DM=8x,得到OA=OD=13x,根据勾股定理得到OA=13,于是得到结论【解答】解:连接OA,CD为O的直径,弦ABCD,AM=AB=6,OM:MD=5:8,设OM=5x,DM=8x,OA=OD=13x,AM=12x=6,x=,OA=13,O的周长=2OA=13,

10、故选B【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键3如图,AB是O的直径,弦CD交AB于点P,AP=2,BP=6,APC=30,则CD的长为()AB2C2D8【考点】M2:垂径定理;KO:含30度角的直角三角形;KQ:勾股定理 【专题】选择题 【分析】作OHCD于H,连结OC,如图,根据垂径定理由OHCD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OAAP=2,接着在RtOPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在RtOHC中利用勾股定理计算出CH=,所以CD=2CH=2【解答】解:作OHC

11、D于H,连结OC,如图,OHCD,HC=HD,AP=2,BP=6,AB=8,OA=4,OP=OAAP=2,在RtOPH中,OPH=30,POH=30,OH=OP=1,在RtOHC中,OC=4,OH=1,CH=,CD=2CH=2故选C【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧也考查了勾股定理以及含30度的直角三角形的性质4如图,ABC内接于O,若A=,则OBC等于()A1802B2C90+D90【考点】M5:圆周角定理 【专题】选择题 【分析】首先连接OC,由圆周角定理,可求得BOC的度数,又由等腰三角形的性质,即可求得OBC的度数【解答】解:连接OC,ABC内

12、接于O,A=,BOC=2A=2,OB=OC,OBC=OCB=90故选D【点评】此题考查了圆周角定理与等腰三角形的性质此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用5如图,四边形ABCD为O的内接四边形延长AB与DC相交于点G,AOCD,垂足为E,连接BD,GBC=50,则DBC的度数为()A50B60C80D90【考点】M6:圆内接四边形的性质【专题】选择题 【分析】根据四点共圆的性质得:GBC=ADC=50,由垂径定理得:,则DBC=2EAD=80【解答】解:如图,A、B、D、C四点共圆,GBC=ADC=50,AECD,AED=90,EAD=9050=40,延长AE交O于点M,A

13、OCD,DBC=2EAD=80故选C【点评】本题考查了四点共圆的性质:圆内接四边形的任意一个外角等于它的内对角,还考查了垂径定理的应用,属于基础题6在平面直角坐标系中,点O为坐标原点,点A、B、C的坐标分别为A(,0)、B(3,0)、C(0,5),点D在第一象限内,且ADB=60,则线段CD的长的最小值是()A22B2C2D2【考点】M8:点与圆的位置关系;D5:坐标与图形性质;M5:圆周角定理 【专题】选择题 【分析】作圆,求出半径和PC的长度,判出点D只有在CP上时CD最短,CD=CPDP求解【解答】解:作圆,使ADB=60,设圆心为P,连结PA、PB、PC,PEAB于E,如图所示:A(,

14、0)、B(3,0),E(2,0)又ADB=60,APB=120,PE=1,PA=2PE=2,P(2,1),C(0,5),PC=2,又PD=PA=2,只有点D在线段PC上时,CD最短(点D在别的位置时构成CDP)CD最小值为:22故选:C【点评】本题主要考查坐标与图形的性质,圆周角定理及勾股定理,解决本题的关键是判出点D只有在CP上时CD最短7下列说法中,正确的是()A三点确定一个圆 B三角形有且只有一个外接圆C四边形都有一个外接圆 D圆有且只有一个内接三角形【考点】M9:确定圆的条件 【专题】选择题 【分析】根据确定圆的条件逐一判断后即可得到答案【解答】解:A、不在同一直线上的三点确定一个圆,

15、故原命题错误;B、三角形有且只有一个外切圆,原命题正确;C、并不是所有的四边形都有一个外接圆,原命题错误;D、圆有无数个内接三角形故选B【点评】本题考查了确定圆的条件,不在同一直线上的三点确定一个圆8如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,2),则ABC外接圆的圆心坐标是()A(2,3)B(3,2)C(1,3)D(3,1)【考点】MA:三角形的外接圆与外心;D5:坐标与图形性质 【专题】选择题 【分析】由已知点的坐标得出ABC为直角三角形,BAC=90,得出ABC的外接圆的圆心是斜边BC的中点,即可得出结果【解答】解:如图所示:点A,B,C的坐标为(1,4)

16、,(5,4),(1,2),ABC为直角三角形,BAC=90,ABC的外接圆的圆心是斜边BC的中点,ABC外接圆的圆心坐标是(,),即(3,1)故选:D【点评】本题考查了三角形的外接圆与外心、坐标与图形性质、直角三角形的外心特征;熟记直角三角形的外心特征,根据题意得出三角形是直角三角形是解决问题的关键9在平面直角坐标系xOy中,经过点(sin45,cos30)的直线,与以原点为圆心,2为半径的圆的位置关系是()A相交B相切C相离D以上三者都有可能【考点】MB:直线与圆的位置关系;D5:坐标与图形性质;T5:特殊角的三角函数值 【专题】选择题 【分析】设直线经过的点为A,若点A在圆内则直线和圆一定

17、相交;若点在圆上或圆外则直线和圆有可能相交或相切或相离,所以先要计算OA的长和半径2比较大小再做选择【解答】解:设直线经过的点为A,点A的坐标为(sin45,cos30),OA=,圆的半径为2,OA2,点A在圆内,直线和圆一定相交,故选A【点评】本题考查了直线和圆的位置关系,用到的知识点有特殊角的锐角三角函数值、勾股定理的运用,判定点A和圆的位置关系是解题关键10如图,菱形ABCD的边AB=20,面积为320,BAD90,O与边AB,AD都相切,AO=10,则O的半径长等于()A5B6C2D3【考点】MC:切线的性质;L8:菱形的性质 【专题】选择题 【分析】如图作DHAB于H,连接BD,延长

18、AO交BD于E利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由AOFDBH,可得=,即可解决问题【解答】解:如图作DHAB于H,连接BD,延长AO交BD于E菱形ABCD的边AB=20,面积为320,ABDH=32O,DH=16,在RtADH中,AH=12,HB=ABAH=8,在RtBDH中,BD=8,设O与AB相切于F,连接AFAD=AB,OA平分DAB,AEBD,OAF+ABE=90,ABE+BDH=90,OAF=BDH,AFO=DHB=90,AOFDBH,=,=,OF=2故选C【点评】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常

19、用辅助线,构造直角三角形解决问题,属于中考常考题型11如图,P为O外一点,PA、PB分别切O于A、B,CD切O于点E,分别交PA、PB于点C、D,若PA=5,则PCD的周长为()A5B7C8D10【考点】MG:切线长定理 【专题】选择题 【分析】由切线长定理可得PA=PB,CA=CE,DE=DB,由于PCD的周长=PC+CE+ED+PD,所以PCD的周=PC+CA+BD+PD=PA+PB=2PA,故可求得三角形的周长【解答】解:PA、PB为圆的两条相交切线,PA=PB,同理可得:CA=CE,DE=DBPCD的周长=PC+CE+ED+PD,PCD的周长=PC+CA+BD+PD=PA+PB=2PA

20、,PCD的周长=10,故选D【点评】本题考查了切线的性质以及切线长定理的运用12如图,AB是O的直径,点E为BC的中点,AB=4,BED=120,则图中阴影部分的面积之和为()AB2CD1【考点】MO:扇形面积的计算 【专题】选择题 【分析】首先证明ABC是等边三角形则EDC是等边三角形,边长是2而和弦BE围成的部分的面积=和弦DE围成的部分的面积据此即可求解【解答】解:连接AE,OD、OEAB是直径,AEB=90,又BED=120,AED=30,AOD=2AED=60OA=ODAOD是等边三角形,OAD=60,点E为BC的中点,AEB=90,AB=AC,ABC是等边三角形,边长是4EDC是等

21、边三角形,边长是2BOE=EOD=60,和弦BE围成的部分的面积=和弦DE围成的部分的面积阴影部分的面积=SEDC=22=故选:A【点评】本题考查了等边三角形的面积的计算,证明EDC是等边三角形,边长是4理解和弦BE围成的部分的面积=和弦DE围成的部分的面积是关键13如图,CD是O的直径,弦ABCD于点H,若D=30,CH=1cm,则AB=2 cm【考点】M2:垂径定理 【专题】选择题 【分析】连接AC、BC利用圆周角定理知D=B,然后根据已知条件“CD是O的直径,弦ABCD于点H”,利用垂径定理知BH=AB;最后再由直角三角形CHB的正切函数求得BH的长度,从而求得AB的长度【解答】解:连接

22、AC、BCD=B(同弧所对的圆周角相等),D=30,B=30;又CD是O的直径,弦ABCD于点H,BH=AB;在RtCHB中,B=30,CH=1cm,BH=,即BH=;AB=2cm故答案是:2【点评】本题考查了垂径定理和直角三角形的性质,解此类题目要注意将圆的问题转化成三角形的问题再进行计算14在AOB中,AB=OB=2,COD中,CD=OC=3,ABO=DCO连接AD、BC,点M、N、P分别为OA、OD、BC的中点若A、O、C三点在同一直线上,且ABO=2,则=2sin(用含有的式子表示);固定AOB,将COD绕点O旋转,PM最大值为【考点】M9:确定圆的条件;KH:等腰三角形的性质;LL:

23、梯形中位线定理;S9:相似三角形的判定与性质 【专题】填空题 【分析】(1)连接BM、CN,则BMOA,CNOD,由四点共圆的判定知点B、C、M、N在以BC为直径的圆,且有MP=PN=BC2,而MN是AOD的中位线,有MN等于AD的一半,故AD:BC=MN:PM,而可求得PMNBAO,有MN:PN=AO:AB=2sin,从而求得AD:BC的值;(2)当DCAB时,即四边形ABCO是梯形时,PM有最大值,由梯形的中位线的公式可求解【解答】解:(1)连接BM、CN,由题意知BMOA,CNOD,AOB=COD=90,A、O、C三点在同一直线上,B、O、D三点也在同一直线上,BMC=CNB=90,P为

24、BC中点,在RtBMC中,PM=BC,在RtBNC中,PN=BC,PM=PN,B、C、N、M四点都在以点P为圆心,BC为半径的圆上,MPN=2MBN,又MBN=ABO=,MPN=ABO,PMNBAO,由题意知MN=AD,PM=BC,在RtBMA中,=sin,AO=2AM,=2sin,=2sin;(2)取BO中点G,连接PG,MG,则PG=OC=,GM=AB=1,所以当M,P,G共线的时候PM最大=1+1.5=2.5【点评】本题利用了相似三角形的性质和等腰三角形的性质:三线合一、四点共圆的判定、正弦的概念、梯形的中位线的性质求解15如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即O

25、M=d我们把圆上到直线l的距离等于1的点的个数记为m如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=1;(2)当m=2时,d的取值范围是1d3【考点】MB:直线与圆的位置关系 【专题】填空题 【分析】根据直线与圆的位置关系和直线与圆的交点个数以及命题中的数据分析即可得到答案【解答】解:(1)当d=3时,32,即dr,直线与圆相离,则m=1,故答案为:1;(2)当d=3时,m=1;当d=1时,m=3;当1d3时,m=2,故答案为:1d3【点评】本题考查了直线与圆的位置关系,解题的关键是了解直线与圆的位置关系与d与r的数量关系

26、16如图,O的半径为6cm,B为O外一点,OB交O于点A,AB=OA,动点P从点A出发,以 cm/s的速度在O上按逆时针方向运动一周回到点A立即停止当点P运动的时间为2秒或10秒时,BP与O相切【考点】MD:切线的判定 【专题】填空题 【分析】根据切线的判定与性质进行分析即可若BP与O相切,则OPB=90,又因为OB=2OP,可得B=30,则BOP=60;根据弧长公式求得弧AP长,除以速度,即可求得时间【解答】解:连接OP当OPPB时,BP与O相切,AB=OA,OA=OP,OB=2OP,OPB=90;B=30;O=60;OA=6cm,弧AP=2,圆的周长为:12,点P运动的距离为2或122=1

27、0;当t=2秒或10秒时,有BP与O相切故答案为:2秒或5秒【点评】本题考查的是切线的性质及弧长公式,解答此题时要注意过圆外一点有两条直线与圆相切,不要漏解17我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率的近似值,设半径为r的圆内接正n边形的周长为L,圆的直径为d,如图所示,当n=6时,=3,那么当n=12时,=3.11(结果精确到0.01,参考数据:sin15=cos750.259)【考点】MM:正多边形和圆;T7:解直角三角形【专题】填空题 【分析】圆的内接正十二边形被半径分成顶角为30的十二个等腰三角形,作辅助线构造直角

28、三角形,根据中心角的度数以及半径的大小,求得L=24rsin15,d=2r,进而得到3.11【解答】解:如图,圆的内接正十二边形被半径分成12个如图所示的等腰三角形,其顶角为30,即AOB=30,作OHAB于点H,则AOH=15,AO=BO=r,RtAOH中,sinAOH=,即sin15=,AH=rsin15,AB=2AH=2rsin15,L=122rsin15=24rsin15,又d=2r,=3.11,故答案为:3.11【点评】本题主要考查了正多边形和圆以及解直角三角形的运用,把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的

29、外接圆18如图,在RtAOB中,B=40,以OA为半径,O为圆心作O,交AB于点C,交OB于点D求的度数【考点】M4:圆心角、弧、弦的关系 【专题】解答题 【分析】连接OC,求出A度数,根据等腰三角形性质求出ACO,根据三角形外角性质求出即可【解答】解:连接OC,O=90,B=40,A=1809040=50,OA=OC,ACO=A=50,COD=ACOB=10,的度数是10【点评】本题考查了圆心角、弧、弦之间的关系,等腰三角形性质,三角形内角和定理,三角形外角性质的应用,关键是求出COD的度数19如图,一面墙上有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接矩形,已知矩形的高A

30、C=2米,宽CD=米(1)求此圆形门洞的半径;(2)求要打掉墙体的面积【考点】M3:垂径定理的应用;KQ:勾股定理 【专题】解答题 【分析】(1)先证得BC是直径,在直角三角形BCD中,由BD与CD的长,利用勾股定理求出BC的长,即可求得半径;(2)打掉墙体的面积=2(S扇形OACSAOC)+S扇形OABSAOB,根据扇形的面积和三角形的面积求出即可【解答】解:(1)连结AD、BC,BDC=90,BC是直径,BC=圆形门洞的半径为 (2)取圆心O,连结OA由上题可知,OA=OB=AB=,AOB是正三角形,AOB=60,AOC=120,SAOB=,SAOC=S=2(S扇形OACSAOC)+S扇形

31、OABSAOB=2()+()=打掉墙体面积为平方米【点评】本题考查了圆周角定理和垂径定理,扇形和三角形的面积,矩形的性质,关键是理解阴影部分的面积是由哪几部分图形组成的,然后利用公式求值20如图,有两条公路OM,ON相交成30,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁50米内会受到噪音影响,已知有两台相距30米的拖拉机正沿ON方向行驶,它们的速度均为5米/秒,问这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间是多少?【考点】M8:点与圆的位置关系;N4:作图应用与设计作图 【专题】解答题 【分析】过点A作ACON,求出AC的长,第一台

32、到B点时开始对学校有噪音影响,第一台到C点时,第二台到B点也开始有影响,第一台到D点,第二台到C点,直到第二台到D点噪音才消失【解答】解:如图,过点A作ACON,MON=30,OA=80米,AC=40米,当第一台拖拉机到B点时对学校产生噪音影响,此时AB=50,由勾股定理得:BC=30,第一台拖拉机到D点时噪音消失,所以CD=30由于两台拖拉机相距30米,则第一台到D点时第二台在C点,还须前行30米后才对学校没有噪音影响所以影响时间应是:905=18秒答:这两台拖拉机沿ON方向行驶给小学带来噪音影响的时间是18秒【点评】本题考查的是点与圆的位置关系,根据拖拉机行驶的方向,速度,以及它在以A为圆

33、心,50米为半径的圆内行驶的BD的弦长,求出对小学产生噪音的时间21如图,AN是M的直径,NBx轴,AB交M于点C(1)若点A(0,6),N(0,2),ABN=30,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是M的切线【考点】MD:切线的判定;D5:坐标与图形性质 【专题】解答题 【分析】(1)在RtABN中,求出AN、AB即可解决问题;(2)连接MC,NC只要证明MCD=90即可;【解答】解:(1)A的坐标为(0,6),N(0,2),AN=4,ABN=30,ANB=90,AB=2AN=8,由勾股定理可知:NB=,B(,2)(2)连接MC,NC AN是M的直径,ACN=90,NC

34、B=90,在RtNCB中,D为NB的中点,CD=NB=ND,CND=NCD,MC=MN,MCN=MNC,MNC+CND=90,MCN+NCD=90,即MCCD直线CD是M的切线【点评】本题考查圆的切线的判定、坐标与图形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型22如图,直线AB、BC、CD分别与O相切于E、F、G,且ABCD,OB=6cm,OC=8cm求:(1)BOC的度数;(2)BE+CG的长;(3)O的半径【考点】MG:切线长定理 【专题】解答题 【分析】(1)根据切线的性质得到OB平分EBF,OC平分GCF,OFBC,再根据平行线的性质得GCF+EBF

35、=180,则有OBC+OCB=90,即BOC=90;(2)由勾股定理可求得BC的长,进而由切线长定理即可得到BE+CG的长;(3)最后由三角形面积公式即可求得OF的长【解答】解:(1)连接OF;根据切线长定理得:BE=BF,CF=CG,OBF=OBE,OCF=OCG;ABCD,ABC+BCD=180,OBE+OCF=90,BOC=90;(2)由(1)知,BOC=90OB=6cm,OC=8cm,由勾股定理得到:BC=10cm,BE+CG=BC=10cm(3)OFBC,OF=4.8cm【点评】此题主要是综合运用了切线长定理和切线的性质定理注意:求直角三角形斜边上的高时,可以借助直角三角形的面积进行

36、计算23如图,在O中,弦AB=弦CD,ABCD于点E,且AEEB,CEED,连结AO,DO,BD(1)求证:EB=ED(2)若AO=6,求的长【考点】MN:弧长的计算;M5:圆周角定理 【专题】解答题 【分析】(1)由AB=CD,根据圆心角、弧、弦的关系定理得出=,即+=+,那么=,根据圆周角定理得到CDB=ABD,利用等角对等边得出EB=ED;(2)先求出CDB=ABD=45,再根据圆周角定理得出AOB=90又AO=6,代入弧长公式计算即可求解【解答】(1)证明:AB=CD,=,即+=+,=,、所对的圆周角分别为CDB,ABD,CDB=ABD,EB=ED;(2)解:ABCD,CDB=ABD=

37、45,AOD=90AO=6,的长=3【点评】本题考查了弧长的计算,圆心角、弧、弦的关系定理,圆周角定理,等腰三角形的判定,证明出CDB=ABD是解题的关键24中国扇文化有着深厚的文化底蕴,是民族文化的一个组成部分,它与竹文化、佛教文化有着密切关系历来中国被誉为制扇王国扇子主要材料是:竹、木、纸、象牙、玳瑁、翡翠、飞禽翎毛、其它棕榈叶、槟榔叶、麦杆、蒲草等也能编制成各种千姿百态的日用工艺扇,造型优美,构造精制,经能工巧匠精心镂、雕、烫、钻或名人挥毫题诗作画,使扇子艺术身价倍增折扇,古称“聚头扇“,或称为撒扇,或折叠扇,以其收拢时能够二头合并归一而得名如图,折扇的骨柄OA的长为5a,扇面的宽CA的长为3a,折扇张开的角度为n,求出扇面的面积(用代数式表示)【考点】MO:扇形面积的计算 【专题】解答题 【分析】由OA=5a、AC=3a得OC=2a,根据扇面的面积S=列式化简即可得【解答】解:OA=5a,AC=3a,OC=2a,扇面的面积S=【点评】本题主要考查扇形的面积计算,掌握扇形面积的计算公式和扇面面积=大扇形面积小扇形面积是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁