高中数学全套教案(新人教A版).pdf

上传人:豆**** 文档编号:29398601 上传时间:2022-07-30 格式:PDF 页数:49 大小:996.71KB
返回 下载 相关 举报
高中数学全套教案(新人教A版).pdf_第1页
第1页 / 共49页
高中数学全套教案(新人教A版).pdf_第2页
第2页 / 共49页
点击查看更多>>
资源描述

《高中数学全套教案(新人教A版).pdf》由会员分享,可在线阅读,更多相关《高中数学全套教案(新人教A版).pdf(49页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、学习必备欢迎下载第一章三角函数1.1 任意角和弧度制1.1.1任意角一、 教学目标:1、知识与技能(1)推广角的概念、引入大于360角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4) 掌握所有与角终边相同的角(包括角)的表示方法; ( 5)树立运动变化观点,深刻理解推广后的角的概念;( 6)揭示知识背景,引发学生学习兴趣. (7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识. 2、过程与方法通过创设情境: “转体720,逆(顺)时针旋转” ,角有大于360角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以

2、后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习. 3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物. 二、教学重、难点重点 : 理解正角、负角和零角的定义,掌握终边相同角的表示法. 难点 : 终边相同的角的表示. 三、学法与教学用具之前的学习使我们知道最大的角是周角, 最小的角是零角. 通过回忆和观察日常生活中实际例

3、子, 把对角的理解进行了推广. 把角放入坐标系环境中以后, 了解象限角的概念. 通过角终边的旋转掌握终边相同角的表示方法. 我们在学习这部分内容时, 首先要弄清楚角的表示符号, 以及正负角的表示. 另外还有相同终边角的集合的表示等. 教学用具 : 电脑、投影机、三角板四、教学设想【创设情境】思考 : 你的手表慢了5 分钟,你是怎样将它校准的?假如你的手表快了1.25 小时,你应当如何将它校准?当时间校准以后,分针转了多少度? 取出一个钟表,实际操作 我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上 , 这就是说角已不仅仅局限于0360之间,这正是我们这节课要研究的主要

4、内容任意角. 【探究新知】1初中时,我们已学习了0360角的概念,它是如何定义的呢? 展示投影 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 如图1.1-1 ,一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角. 旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫的顶点 . 2. 如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720” (即转体 2 周) , “转体1080” (即转体3 周)等 , 都是遇到大于360的角以及按不同方向旋转而成的角. 同学们思考一下 : 能否再举出几个现实生活中

5、“大于360的角或按不同方向旋转而成的角”的例子 , 这些说明了什么问题 ?又该如何区分和表示这些角呢? 学习必备欢迎下载 展示课件 如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定: 按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转, 我们称它形成了一个零角(zero angle). 展示课件 如教材图1.1.3(1)中的角是一个正角, 它等于750;图 1.1.3(2)中,正角210,负角150 ,660;这样,

6、我们就把角的概念推广到了任意角(any angle ), 包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角”或“”可简记为. 3. 在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念. 角的顶点与原点重合,角的始边与x轴的非负半轴重合。那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角(quadrant angle).如教材图1.1-4中的30角、210角分别是第一象限角和第三象限角. 要特别注意 :如果角的终边在坐标轴上, 就认为这个角不属于任何一个象限, 称为非象限角 . 4. 展示投影 练习 : (1)( 口答 ) 锐角是第几象限角?

7、第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题. (2)( 回答 ) 今天是星期三那么7 ()k kZ天后的那一天是星期几? 7 ()k kZ天前的那一天是星期几?100 天后的那一天是星期几? 5. 探究 : 将角按上述方法放在直角坐标系中后, 给定一个角 , 就有唯一的一条终边与之对应. 反之 , 对于直角坐标系中任意一条射线OB( 如图1.1-5),以它为终边的角是否唯一?如果不惟一 , 那么终边相同的角有什么关系 ?请结合 4.(2)口答加以分析 . 展示课件 不难发现 , 在教材图1.1-5中 , 如果32的终边是OB, 那么328 , 392角的终边都是OB,而3283

8、21 360,39232( 1) 360. 设|32360 ,SkkZ, 则328 , 392角都是S的元素 ,32角也是S的元素 . 因此 ,所有与32角终边相同的角, 连同32角在内 , 都是集合S的元素;反过来,集合S的任一元素显然与32角终边相同 . 一般地 , 我们有 : 所有与角终边相同的角, 连同角在内 , 可构成一个集合|360 ,SkkZ, 即任一与角终边相同的角, 都可以表示成角与整数个周角的和. 6. 展示投影 例题讲评例 1. 例 1 在0360范围内,找出与950 12角终边相同的角,并判定它是第几象限角. (注:0360是指0360)例 2. 写出终边在y轴上的角的

9、集合. 例 3. 写出终边直线在yx上的角的集合S, 并把S中适合不等式360720的元素写出来 . 7. 展示投影 练习学习必备欢迎下载教材6P第 3、4、 5 题 . 注意 : ( 1)kZ; (2)是任意角(正角、负角、零角); (3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360的整数倍 . 8. 学习小结(1)你知道角是如何推广的吗? (2)象限角是如何定义的呢? (3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直线yx上的角的集合 . 五、评价设计1作业:习题1.1 A 组第 1,2,3题2多举出一些日常生活中的“大于36

10、0的角和负角”的例子,熟练掌握他们的表示,进一步理解具有相同终边的角的特点1.1.2弧度制一、教学目标:1、知识与技能(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;( 3)掌握并运用弧度制表示的弧长公式、扇形面积公式; (4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集R之间建立的一一对应关系 .(6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系. 2、过程与方法创设情境 , 引入弧度制度量角的大小, 通过探究理解并掌握弧度制的定义, 领会定义的合理性. 根据弧度制的定义推导并运用弧长公式和扇形面积公式

11、. 以具体的实例学习角度制与弧度制的互化, 能正确使用计算器 . 3、情态与价值通过本节的学习,使同学们掌握另一种度量角的单位制-弧度制, 理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下 ,角的集合与实数集R之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应; 反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备 . 二、教学重、难点重点 : 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用. 难点 : 理解弧度制定义,弧度

12、制的运用. 三、学法与教学用具在我们所掌握的知识中,知道角的度量是用角度制,但是为了以后的学习,我们引入了弧度制的概念,我们一定要准确理解弧度制的定义,在理解定义的基础上熟练掌握角度制与弧度制的互化. 教学用具 : 计算器、投影机、三角板四、教学设想【创设情境】有人问:海口到三亚有多远时,有人回答约250 公里,但也有人回答约160 英里,请问那一种回答是正确的?(已知1 英里 =1.6 公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制. 他们的长度单位是不同的,但是,他们之间可以换算:1 英里 =1.6 公里 . 在角度的度量里

13、面,也有类似的情况,一个是角度制,我们已经不再陌生, 另外一个就是我们这节课要研究的角的另外一种度量制- 弧度制 . 学习必备欢迎下载【探究新知】1角度制规定:将一个圆周分成360 份,每一份叫做1 度,故一周等于360 度,平角等于180 度,直角等于90 度等等 . 弧度制是什么呢?1 弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本67PP,自行解决上述问题. 2. 弧度制的定义 展示投影 长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad,或 1 弧度,或 1( 单位可以省略不写 ). 3. 探究 : 如图 , 半径为r的圆的圆心与

14、原点重合, 角的终边与x轴的正半轴重合, 交圆于点A, 终边与圆交于点B. 请完成表格 . 弧AB的长OB旋转的方向AOB的弧度数AOB的度数r逆时针方向2 r逆时针方向r12r20180180我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如- , -2 等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0, 角的正负主要由角的旋转方向来决定. 4. 思考 : 如果一个半径为r的圆的圆心角所对的弧长是l, 那么a的弧度数是多少? 角的弧度数的绝对值是:rl,其中, l 是圆心角所对的弧长,r是半径 . 5. 根据探究中180rad填空 : 1_rad,1

15、_rad度显然 , 我们可以由此角度与弧度的换算了. 6. 例题讲解例 1. 按照下列要求, 把67 30化成弧度 : (1) 精确值;(2) 精确到 0.001 的近似值 . 例 2. 将 3.14rad换算成角度 ( 用度数表示 , 精确到 0.001). 注意 : 角度制与弧度制的换算主要抓住180rad, 另外注意计算器计算非特殊角的方法. 7. 填写特殊角的度数与弧度数的对应表: 度03045120120120120弧度3232角的概念推广以后,在弧度制下 ,角的集合与实数集R之间建立了一一对应关系:即每一个角都有唯一的一个实数 (即这个角的弧度数)与它对应;反过来,每一个实数也都有

16、唯一的一个角(即弧度数等于这个yxAOB学习必备欢迎下载实数的角)与它对应. 8. 例题讲评例 3. 利用弧度制证明下列关于扇形的公式: (1)lR; (2)212SR; (3)12SlR. 其中R是半径 ,l是弧长 ,(02 )为圆心角 ,S是扇形的面积. 例 4. 利用计算器比较sin1.5和sin85的大小 . 注意 : 弧度制定义的理解与应用, 以及角度与弧度的区别. 9. 练习教材10P. 9. 学习小结(1) 你知道角弧度制是怎样规定的吗? (2) 弧度制与角度制有何不同, 你能熟练做到它们相互间的转化吗? 五、评价设计1作业:习题1.1 A 组第 7,8,9题2要熟练掌握弧度制与

17、角度制间的换算, 以及异同能够使用计算器求某角的各三角函数值1.2.1任意角的三角函数( 一) 一、教学目标:1、知识与技能(1)掌握任意角的正弦、余弦、 正切的定义 (包括这三种三角函数的定义域和函数值在各象限的符号);( 2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)掌握并能初步运用公式一;(5)树立映射观点,正确理解三角函数是以实数为自变量的函数. 2、过程与方法初中学过 : 锐角三角函数就是以锐角为自变量, 以比值为函数值的函数. 引导学生把这个定义推广到任意角 , 通过单位

18、圆和角的终边, 探讨任意角的三角函数值的求法, 最终得到任意角三角函数的定义. 根据角终边所在位置不同, 分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号. 最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习. 3、情态与价值任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点. 过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集

19、到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解. 本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数. 这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系. 二、教学重、难点重点 : 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);学习必备欢迎下载终边相同的角的同一三角函数值相等(公式一). 难点 : 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解. 三、学法与教学用

20、具任意角的三角函数可以有不同的定义方法,本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数 . 表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系. 另外,这样的定义使得三角函数所反映的数与形的关系更加直接,数形结合更加紧密,这就为后续内容的学习带来方便,也使三角函数更加好用了. 教学用具 : 投影机、三角板、圆规、计算器四、教学设想第一课时任意角的三角函数(一)【创设情境】提问:锐角O的正弦、余弦、正切怎样表示?借助右图直角三角形,复习回顾. 引入:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。数, 你能用直角坐标系中角的终边上点的坐标来表示锐角三

21、角函数吗? 如图 , 设锐角的顶点与原点O重合 , 始边与x轴的正半轴重合, 那( , )P a b,么 它的 终边 在第 一象限. 在的 终边 上任 取一 点它与原点的距离220rab. 过P作x轴的垂线 , 垂足为M, 则线段OM的长度为a, 线段MP的长度为b.则sinMPbOPr; cosOMaOPr; tanMPbOMa. P在思考:对于确定的角,这三个比值是否会随点的终边上的位置的改变而改变呢?显然,我们可以将点取在使线段OP的长1r的特殊位置上, 这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:sinMPbOP; cosOMaOP; tanMPbOMa. 思考: 上述锐角

22、的三角函数值可以用终边上一点的坐标表示. 那么 , 角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题任意角的三角函数. 【探究新知】1. 探究 : 结合上述锐角的三角函数值的求法, 我们应如何求解任意角的三角函数值呢? 显然 , 我们只需在角的终边上找到一个点, 使这个点到原点的距离为1, 然后就可以类似锐角求得该角的三角函数值了. 所以 , 我们在此引入单位圆的定义: 在直角坐标系中, 我们称以原点O为圆心 , 以单位长度为半径的圆 . 2. 思考 : 如何利用单位圆定义任意角的三角函数的定义? 如图 , 设是一个任意角, 它的终边与单位

23、圆交于点( , )P x y, 那么 : (1)y叫做的正弦 (sine),记做sin, 即siny;y P ( a,b)r O M a的终边P(x,yO x y 学习必备欢迎下载(2)x叫做的余弦 (cossine),记做cos, 即cosx;(3)yx叫做的正切 (tangent),记做tan, 即tan(0)yxx. 注意 : 当是锐角时,此定义与初中定义相同(指出对边,邻边,斜边所在);当 不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点( ,)P x y,从而就必然能够最终算出三角函数值. 3. 思考 : 如果知道角终边上一点, 而这个点不是终边

24、与单位圆的交点, 该如何求它的三角函数值呢? 前面我们已经知道, 三角函数的值与点P在终边上的位置无关,仅与角的大小有关. 我们只需计算点到原点的距离22rxy, 那么22sinyxy,22cosxxy, tanyx. 所以,三角函数是以为自变量, 以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数. 4. 例题讲评例 1. 求53的正弦、余弦和正切值. 例 2已知角的终边过点0( 3, 4)P,求角的正弦、余弦和正切值. 教材给出这两个例题,主要是帮助理解任意角的三角函数定义. 我也可以尝试其他方法: 如例 2

25、: 设3,4,xy则22( 3)( 4)5r. 于是4sin5yr,3cos5xr,4tan3yx. 5. 巩固练习17P第 1,2,3题6. 探究 : 请根据任意角的三角函数定义, 将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:三角函数定义域第一象限第二象限第三象限第四象限角度制弧度制sincostan7例题讲评例 3求证:当且仅当不等式组sin0tan0成立时,角为第三象限角. 8. 思考 : 根据三角函数的定义, 终边相同的角的同一三角函数值有和关系? 显然 : 终边相同的角的同一三角函数值相等.即有公式一 : sin(2)sinkcos(2)co

26、sk (其中kZ) 学习必备欢迎下载tan(2)tank9. 例题讲评例 4. 确定下列三角函数值的符号, 然后用计算器验证: (1)cos250; (2)sin()4; (3)tan( 672 ); (4)tan3例 5. 求下列三角函数值: (1)sin1480 10; (2)9cos4; (3)11tan()6利用公式一 , 可以把求任意角的三角函数值, 转化为求0到2( 或0到360) 角的三角函数值. 另外可以直接利用计算器求三角函数值, 但要注意角度制的问题. 10. 巩固练习17P第 4,5,6,7题11. 学习小结(1) 本章的三角函数定义与初中时的定义有何异同? (2) 你能

27、准确判断三角函数值在各象限内的符号吗? (3) 请写出各三角函数的定义域;(4) 终边相同的角的同一三角函数值有什么关系?你在解题时会准确熟练应用公式一吗? 五、评价设计1作业:习题1.2 A 组第 1,2 题2比较角概念推广以后, 三角函数定义的变化. 思考公式一的本质是什么?要做到熟练应用. 另外 , 关于三角函数值在各象限的符号要熟练掌握, 知道推导方法. 第二课时任意角的三角函数(二)【复习回顾】1、 三角函数的定义;2、 三角函数在各象限角的符号;3、 三角函数在轴上角的值;4、 诱导公式(一) :终边相同的角的同一三角函数的值相等;5、 三角函数的定义域. 要求:记忆 .并指出,三

28、角函数没有定义的地方一定是在轴上角,所以,凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆. 【探究新知】1引入:角是一个图形概念,也是一个数量概念(弧度数). 作为角的函数三角函数是一个数量概念(比值) ,但它是否也是一个图形概念呢?换句话说,能否用几何方式来表示三角函数呢?2 边描述边画 以坐标原点为圆心,以单位长度1 为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1 厘米或1 米) . 当角为第一象限角时,则其终边与单位圆必有一个交点( , )P x y,过点P作PMx轴交x轴于点M,则请你观察: 根据三角函数的定义:| | |sin|MPy;| | |c

29、os|OMx随着在第一象限内转动,MP、OM是否也跟着变化?3思考:(1)为了去掉上述等式中的绝对值符号,能否给线段MP、OM规定一个适当的方向,使它们的取值与点P的坐标一致?O x y a 角 的 终P T M A 学习必备欢迎下载(2)你能借助单位圆,找到一条如MP、OM一样的线段来表示角的正切值吗?我们知道,指标坐标系内点的坐标与坐标轴的方向有关. 当角的终边不在坐标轴时, 以O为始点、M为终点,规定:当线段OM与x轴同向时,OM的方向为正向,且有正值x;当线段OM与x轴反向时,OM的方向为负向,且有正值x;其中x为P点的横坐标 . 这样 ,无论那种情况都有cosOMx同理 , 当角的终

30、边不在x轴上时 , 以M为始点、P为终点,规定:当线段MP与y轴同向时,MP的方向为正向,且有正值y;当线段MP与y轴反向时,MP的方向为负向,且有正值y;其中y为P点的横坐标 . 这样 ,无论那种情况都有sinMPy4. 像MPOM、这种被看作带有方向的线段,叫做有向线段(direct line segment). 5. 如何用有向线段来表示角的正切呢 ? 如上图 , 过点(1,0)A作单位圆的切线, 这条切线必然平行于轴, 设它与的终边交于点T, 请根据正切函数的定义与相似三角形的知识, 借助有向线段OAAT、, 我们有tanyATx我们把这三条与单位圆有关的有向线段MPOMAT、, 分别

31、叫做角的正弦线、余弦线、正切线,统称为三角函数线. 6. 探究: (1)当角的终边在第二、第三、第四象限时,你能分别作出它们的正弦线、余弦线和正切线吗?(2)当的终边与x轴或y轴重合时,又是怎样的情形呢?7. 例题讲解例 1已知42,试比较,tan,sin,cos的大小 . 处理 : 师生共同分析解答, 目的体会三角函数线的用处和实质. 8. 练习19P第 1,2,3,4题学习必备欢迎下载9 学习小结(1) 了解有向线段的概念. (2) 了解如何利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来. (3) 体会三角函数线的简单应用. 【评价设计】1

32、 作业:比较下列各三角函数值的大小( 不能使用计算器) (1)sin15、tan15(2)cos15018、cos121(3)5、tan52练习三角函数线的作图. 1.2.2同角三角函数的基本关系一、教学目标:1、知识与技能(1) 使学生掌握同角三角函数的基本关系;(2) 已知某角的一个三角函数值,求它的其余各三角函数值; (3) 利用同角三角函数关系式化简三角函数式;(4) 利用同角三角函数关系式证明三角恒等式;(5)牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;(6)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法

33、;(7)掌握恒等式证明的一般方法. 2、过程与方法由圆的几何性质出发, 利用三角函数线, 探究同一个角的不同三角函数之间的关系;学习已知一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法. 通过做练习 , 巩固所学知识. 3、情态与价值通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法. 二、教学重、难点重点:公式1cossin22及tancossin的推导及运用: (1)已知某任意角的正弦、余弦、正切值中

34、的一个,求其余两个;(2)化简三角函数式; ( 3)证明简单的三角恒等式. 难点 : 根据角 终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式. 三、学法与教学用具利用三角函数线的定义, 推导同角三角函数的基本关系式: 1cossin22及tancossin, 并灵活应用求三角函数值, 化减三角函数式, 证明三角恒等式等. 教学用具 : 圆规、三角板、投影四、教学设想【创设情境】与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化【探究新知】1.探究 : 三角函数是以单位圆上点的坐标来定义的, 你能从圆的几何

35、性质出发, 讨论一下同一个角不同三角函数之间的关系吗? 如图 : 以正弦线MP, 余弦线OM和半径OP三者的长构成 直 角 三O x y P M 1 A(1,学习必备欢迎下载角形 , 而且1OP. 由勾股定理由221MPOM, 因此221xy, 即22sincos1. 根据三角函数的定义, 当()2akkZ时, 有sintancos. 这就是说 , 同一个角的正弦、余弦的平方等于1,商等于角的正切 . 2.例题讲评例 6. 已知3sin5, 求cos,tan的值 . sin,cos,tan三者知一求二, 熟练掌握 . 3. 巩固练习23P页第 1,2,3题4. 例题讲评例 7. 求证 :cos

36、1sin1sincosxxxx. 通过本例题 , 总结证明一个三角恒等式的方法步骤. 5. 巩固练习23P页第 4,5 题6. 学习小结(1)同角三角函数的关系式的前提是“同角”,因此1cossin22,cossintan(2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论五、评价设计(1) 作业:习题1.2A 组第 10,13 题. (2) 熟练掌握记忆同角三角函数的关系式, 试将关系式变形等, 得到其他几个常用的关系式 ; 注意三角恒等式的证明方法与步骤. 第二章平面向量本章内容介绍向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本

37、的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系. 向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景.在本章中, 学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、 平面向量的数量积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学和物理中的一些问题 . 本节从物理上的力和位移出发,抽象出向量的概念,并说明了向量与数量的区别,然后介绍了向量的一些基本概念

38、 . (让学生对整章有个初步的、全面的了解.)第 1 课时 2.1 平面向量的实际背景及基本概念学习必备欢迎下载教学目标:1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量. 2.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别. 3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力. 教学重点: 理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点: 平行向量、相等向量和共线向量的区别和联系. 学法: 本节是本

39、章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念. 教具:多媒体或实物投影仪,尺规授课类型: 新授课教学思路:一、情景设置:如图,老鼠由 A 向西北逃窜, 猫在 B 处向东追去, 设问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了. 分析:老鼠逃窜的路线AC 、猫追逐的路线BD 实际上都是有方向、有长短的量. 引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?二、新课学习:(一)向量的概念:我们把既有大小又有方向的量叫向量(二)请同学阅读课本后回答:(可制作成幻灯片)1、数

40、量与向量有何区别?2、如何表示向量?3、有向线段和线段有何区别和联系?分别可以表示向量的什么?4、长度为零的向量叫什么向量?长度为1 的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向相同或相反,这组向量有什么关系?7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向量的终点之间有什么关系?(三)探究学习1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法:用有向线段表示;用字母 、(黑体,印刷用)等表示;A B C D A(起点

41、) B (终点)a 学习必备欢迎下载用有向线段的起点与终点字母:AB;向量AB的大小 长度称为向量的模,记作|AB|. 3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别:( 1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段. 4、零向量、单位向量概念:长度为0 的向量叫零向量,记作0. 0 的方向是任意的. 注意 0 与 0 的含义与书写区别. 长度为1 个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都

42、只是限制了大小. 5、平行向量定义:方向相同或相反的非零向量叫平行向量;我们规定0 与任一向量平行. 说明: (1)综合、才是平行向量的完整定义;(2)向量、平行,记作. 6、相等向量定义:长度相等且方向相同的向量叫相等向量. 说明: (1)向量与相等,记作; (2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关. 7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关). 说明: (1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同

43、一直线上的线段的位置关系. (四)理解和巩固:例 1 书本 86 页例 1. 例 2 判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等的当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)学习必备欢迎下载例 3 下列命题正确的是()A.与共线,与共线,则与 c 也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量

44、 与 不共线,则 与都是非零向量D.有相同起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以A 不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B 不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以不正确;对于 C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若 与不都是非零向量,即与至少有一个是零向量,而由零向量与任一向量都共线,可有与共线,不符合已知条件,所以有与都是非零向量,所以应选C. 例 4 如图,设O 是正六边形ABCDEF 的中心,分别写出图中与向量

45、OA、OB、OC相等的向量 . 变式一:与向量长度相等的向量有多少个?(11 个)变式二:是否存在与向量长度相等、方向相反的向量?(存在)变式三:与向量共线的向量有哪些?(FEDOCB,)课堂练习 :1判断下列命题是否正确,若不正确,请简述理由向量AB与CD是共线向量,则A、B、C、D 四点必在一直线上;单位向量都相等;任一向量与它的相反向量不相等;四边形ABCD 是平行四边形当且仅当ABDC一个向量方向不确定当且仅当模为0;共线的向量,若起点不同,则终点一定不同. 解:不正确 .共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB、AC在同一直线上 . 不正确 .单位向量模均相

46、等且为1,但方向并不确定. 不正确 .零向量的相反向量仍是零向量,但零向量与零向量是相等的. 、正确 .不正确 .如图AC与BC共线,虽起点不同,但其终点却相同. 2书本 88 页练习三、小结:1、 描述向量的两个指标:模和方向. 2、 平行向量不是平面几何中的平行线段的简单类比. 学习必备欢迎下载3、 向量的图示,要标上箭头和始点、终点. 四、课后作业:书本 88 页习题 2.1 第 3、 5题第 2 课时 2.2.1 向量的加法运算及其几何意义教学目标:1、 掌握向量的加法运算,并理解其几何意义;2、 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;

47、3、 通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;教学重点: 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.教学难点: 理解向量加法的定义. 学法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义 .结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律. 教具:多媒体或实物投影仪,尺规授课类型: 新授课教学思路

48、:一、设置情景:1、 复习:向量的定义以及有关概念强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置2、 情景设置:(1)某人从A 到 B,再从 B 按原方向到C,则两次的位移和:ACBCAB(2)若上题改为从A 到 B,再从 B 按反方向到C,则两次的位移和:ACBCAB(3)某车从A 到 B,再从 B 改变方向到C,则两次的位移和:ACBCAB(4)船速为AB,水速为BC,则两速度和:ACBCAB二、探索研究:A B C C A B A B C A B C 学习必备欢迎下载O

49、 A a a a b b b 、向量的加法:求两个向量和的运算,叫做向量的加法. 、 三角形法则( “首尾相接,首尾连” )如图,已知向量a、 .在平面内任取一点A,作ABa,BC,则向量AC叫做 a 与的和,记作 a ,即aACBCAB, 规定:a + 0-= 0 + a 探究:(1)两相向量的和仍是一个向量;(2)当向量a与b不共线时,a+b的方向不同向,且|a+b|b|,则a+b的方向与a相同,且|a+b|=|a|-|b|;若 |a|0 时a与a方向相同; 0(内分 ) (外分 ) 0 (-1) ( 外分 )0 (-1 0,(a) b =|a|b|cos ,(a b) =|a|b|cos

50、 ,a (b) =|a|b|cos ,若 0,(a) b =|a|b|cos() = |a|b|( cos ) =|a|b|cos ,(a b) =|a|b|cos ,a (b) =|a|b|cos() = |a|b|( cos ) =|a|b|cos . 3分配律: (a + b) c = a c + b c在平面内取一点O,作OA= a,AB= b,OC= c,a + b (即OB)在 c 方向上的投影等于a、b在 c 方向上的投影和,即|a + b| cos = |a| cos1 + |b| cos2| c | |a + b| cos =|c| |a| cos1 + |c| |b| co

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 成人自考

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁