《考研数学学习心得 (10篇).docx》由会员分享,可在线阅读,更多相关《考研数学学习心得 (10篇).docx(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、考研数学学习心得(10篇)考研数学学习心得(10篇)当我们对人生或者事物有了新的考虑时,能够寻思将其写进心得体会中,这样就能够总结出详细的经历和想法。那么要怎样写呢?下面是我精心整理的考研数学学习心得,欢迎阅读与珍藏。考研数学学习心得1一、注重基础,构建知识体系基本概念、基本方法、基本性质一直是考研数学的重点。概率统计的概念比拟抽象,方法与性质也有相应的适用条件。有些同学在考场上,不知道试题要考察什么,该如何下手,不知道该用哪个公式。我们建议考生在温习中一定要重视基础知识,要温习所有的定义、定理、公式,做足够多的基础题来帮助稳固基本知识。概率统计的知识点是三大科目里较少的,以考察计算能力为主,
2、其中的推导与证明也是计算性的。考生十分要根据历年概率统计考试的两个大题内容,找出所涉及到的概念与方法之间的联络与区别。例如:事件独立性与不相容的关系,随机变量独立与事件独立的关系;分布函数与概率密度之间的联络与差异;区间估计与假设检验之间的联络。把握他们之间的联络与区别,对大家处理其他低分值试题也是有助益的。二、参照大纲,提高综合能力大纲作为指导性文件,对命题、应试双方都是有约束力的。数学的温习要强化基础,随时参考适当的教科书,比方浙江大学版的(概率统计)。有的考生以为温习到这个阶段就能够抛开课本搞题海战术了,这是舍本逐末。建议大家要边看书、边做题,通过做题来稳固概念、方法。同时,考生最好选择
3、一本考研温习资料参照着学习,这样有利于知识能力的迁移,有助于在全面温习的基础上把握重点。三、分类训练,培养应变能力近十年十分是近三年的研究生入学考试试题,加强了对考生分析问题和解决问题能力的考核。在概率统计的两个大题中,基本上都是多个知识点的综合。进而到达对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。建议在打好基础的同时,加强常见题型的训练(历年真题是很好的训练材料),边做边总结,以加深对概念、性质内涵的理解和应用方法的把握,这样才能够做到举一反三,全面地应付试题的变化。考研数学学习心得2考研初试数学答题的方法和技巧首先是确定做题顺序,能够采用填空、计
4、算、选择、证明的顺序。由于尽管选择题的分数相对要少一些,但它们一般对基础知识要求较高,选项迷惑性大,有时需要花很多时间去分析也难以取舍;而且有些选择题的计算量也是很大的,假如在做题的开场就感觉不顺而花过多时间的话,会影响考试的心理状态。证明题考察的是严密的逻辑推理,难度也比拟大。因而,建议这两类题型能够放在后面做,而先做相对简单的。一般来讲,平常温习的时候要尽量从本人薄弱的方面“榨取分数,而正式考试时,先通观整个试卷,迅速客观地评估本人的实力,明确哪些分数是必得的,哪些是可能得到的,哪些是根本得不到的,再采取不同的应对方式,才能镇静自如,进退有据,最终从整体上获胜。同学们能够先解答填空题,一般
5、讲填空题是基本概念,基本运算题,得分比拟容易,当然试题中计算题或者证明题以平常看书或者参加辅导班教师所讲的例题类似的可以以先做;其次做计算题;最后解单项选择题,由于有些单项选择题概念性非常强,计算技巧也比拟高,求解单项选择题一般有下面几种方法:(1)推演法:它适用于题干中给出的条件是解析式子。(2)图示法:它适用于题干中给出的函数具有某种特性,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。(3)举反例排除法:排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函数的情况。(4)逆推法:所谓逆推法就是假定被选的四个答案中某一个正确,然后做逆推,假如
6、得到的结果与题设条件或尽人皆知的正确结果矛盾,则否认这个备选答案。(5)赋值法:将备选的一个答案用详细的数字代入,假如与假设条件或众所周知的事实发生矛盾则予以否认。做选择题的时候,考生能够巧妙地运用图示法和赋值法。这两种方法很有效。同学们平常用得很多,但很多人进考场一紧张就忘了,而用一些常规方法去硬算,结果既浪费了时间又容易出错。计算题的题目结果一般不会十分复杂,一旦出现了很复杂的结果,就需要重点检查一下。假如碰到本人不会做和没有把握的题目,千万不要留空白,能够多写一些相关内容来得一些“步骤分。拿到试卷检查无误后先看一下有没有本人熟悉的题,先解决掉本人有把握的再讲,免得最后没有时间了把本人会的
7、忽略了。针对数学一,一般而言,考研数学第一道大题填空题基本上全是概念性的题目,计算量不大,考生只要温习过,没有遗漏知识点,基本全都能够很快做出来;第二道大题选择题,其中有三四道题是大家都会做的,还有几道偏难的选择题,一时拿不准能够先放一放,实在不会还能够猜一猜;而第三道、第四道大题,一般来讲难度不大,能够先做。历年试题这两道主要是高等数学的基本问题,如极限、偏导数或定积分应用题。接下来的高等数学的题目可能有些难度,假如考生对线性代数和概率统计比拟擅于,能够先各做一个大题,这样整个卷面分数就能够到达70分左右,分数线能够通过。考研数学学习心得3考研数学温习失分的原因填空题失分点1考察点:填空题比
8、拟多的是考察基本运算和基本概念,或者讲填空题比拟多的是计算。2失分原因:运算的准确率比拟差,这种填空题出的计算题题本身不难,同学们出错的原因主要是不够细心。3对策:这就要求同学们温习的时候些基本的运算题不能只看不算。同学们平常对一些基本的运算题也要认真解答,要在每一种类型的计算题里面拿出一定量进行练习。选择题失分点1考察点:选择题一共有八道题,这部分丢分的原因跟填空题出错原因有差异,选择题考的重点跟填空题不一样,填空题主要考基本运算概念,而选择题很少考计算题,它主要考察基本的概念和理论,主要是容易混淆的概念和理论。2失分原因:首先,有些题目确实具有一定的难度。其次,有些同学在温习经过中将重点放
9、在了计算题上,而忽视了基础知识,导致基础知识不扎实。最后,缺乏一定的方法和技巧。由于对这种方法不了解,用常规的方法做,使简单的题变成了复杂的题。3对策:第一,基本理论和基本概念是薄弱环节的同学,就必须在这下功夫,温习一个定理一个性质的时候,即要注意它的内涵又要注意相应的外延。平常在温习的时候要注意基本的概念和理论。第二,客观题有一些方法和技巧,通常做客观题用直接法,这是用得比拟多的,但是也有一些选择题用排除法更为简单,考研的卷子里边有很多题用排除法一眼就能够看出结果,所以要注意这些技巧。计算题失分点1考察点:计算题在整份试卷中占绝大部分,还有一部分是证明题,计算题就是要解决计算的准确率的问题。
10、2失分原因:运算的准确率比拟差。3对策:首先,多做练习是关键。基本的运算必需要练熟,数学跟温习政治英语不一样,数学不是完全靠背,要理解以后通过一定的练习把握方法,并且一定本人要实践。其次,还有一类题就是证明题,假如出了证明题一般来讲这部分就是难点。证明题里面有几个难点的地方是经常考察的地方,同学们温习的时候要注意知识难点的规律和使用方法。建议大家从温习初期就开场为本人准备两个笔记本,一本用于专门整理本人在温习当中碰到过的不懂的知识点,并且将一些容易出错、容易发生混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,这样,一定会留下非常深入的印象,避免遗忘出错。另一本用来整理错题,同学们在
11、温习全程中会碰到很多很多不同类型的题目,对本人曾经不会做的、做错了的题目不要看过标准答案后就轻易放过,应当及时地把它们整理一下,在正确解答经过的后面简单标注一下本人出错的原因、不会做的症结,以后再回头看的时候一定会起到很大的帮助,这也是循序渐进稳步提高解题能力的关键环节。考研数学学习心得4考研数学临场答题注意要点1不要粗心大意犯最低级的错误拿到考卷以后,先把名字及其他试卷要求信息写上,固然这是最基本的常识,但每年都有不少考生会犯这个低级错误。2阅读整套试卷将试卷阅读一遍,看看哪些题目本人比拟熟悉,哪些题没有思路,这套卷子大概哪部分做起来会比拟困难,做到心中有数,以便合理分配时间。3切忌心中发慌
12、假如这套题看起来有很多陌生的题,也不要心慌。毕竟有些试题万变不离其宗,相信只要做到心中不乱、仔细考虑就会产生思路。4合理把握时间假如一道考题考虑了大约有二特别钟仍然没有思路,能够先暂时放弃这道题目,不要在一道试题上花费过多的时间,导致会做的题反而没有时间去做,那就太可惜了。5学会适当放弃当确实没有思路的时候要暂时放弃,假如放弃的是一道选择题,建议大家标记一下此题,防止因而题使答题卡顺序涂错,假如时间充足还可再做。但是,标记要慎重,以免被视为作弊,能够用铅笔标记,交试卷之前用橡皮察去。6确定做题顺序在做题顺序上能够采用选择、填空、计算、证明的顺序。完成选择填空后,做大题时,先通观整个试题,明确哪
13、些分数是必得的,哪些是可能得到的,哪些是根本得不到的,再采取不同的对应方式,才能镇静自若,进退有据,最终从总体上获胜。比方讲,假如你对概率部分的题比拟熟悉,那么这部分的题做题就是有套路,那你就能够先把概率部分做了。通常来讲,概率部分是三门课中最简单最好拿分的。其次就是线代了,当然线代两个大题可能有一个难度略微大一点,另外一个难度相比照较小,那么你能够选择把其中简单一点的,本人有思路的那题先做了。最后再来做高数部分的题,高数一共有5个大题,假如是数一的同学,出现难题通常是在无穷级数,中值定理,曲线、曲面积分,应用题。也就是讲高数部分有一道大题是相对简单的,能够先把这道题做了,通常这道题也就是在大
14、题的第一题。就是讲,这4道大题,一定要先把分给拿住了。最后再来解决略微难一点的。当然剩下的几个题,也要有选择性的来做,假如有一点思路的,能够先考虑,完全没有思路的最后处理。7适当运用做题技巧做选择题的时候,能够巧妙的运用图示法和特殊值法。这两种方法很有效,平常用得人很多,当然不是对所有的选择题都适用。做大题的时候,对于前面讲的完全没有思路的题不要一点不写,写一些相关的内容得一点“步骤分。8做题要细心做题时一定要仔细,该拿分的一定要拿住。尤其是选择题和填空题,由于体现的只是最后结果,一个小小的错误都会令一切努力功亏一篑。很多同学以为选择和填空的分值不大而对其认识不够,把主要的精神都放在了大题上面
15、,但是需要引起大家注意的是:两道选择或填空题的分值就相当于一道大题,假如这类题目失分太多,仅靠大题是很难把分数提很高的。做完一道选择、填空题时只需要大家再仔细的验算一遍即可,并不需要一定要等到做完考卷以后再检查,而且这样也不会花费大家很长时间。9注意步骤的完好性解答题的分数很高,相应的对于考生知识点的考察也更全面一些,有些考题甚至包含了三、四个考察点,因而要求考生答题时相应的知识点应该在卷面上有所体现,步骤过简势必会影响分数。10注意问题之间的联络好多试题的问题并非一个,尤其是概率题,对于此类考题的第一问一定要引起注意。由于它的第二问,甚至第三问可能会与第一问产生直接或间接的联络,第一问假如答
16、错将会导致第二、三问的错误,那么这道考题的分数就会失分很多。11试卷检查假如答完考卷,最好是将试卷再仔细的看一遍,看看还有没有落题。然后再将答题卡与选项核对一下,防止顺序涂错。假如不能保证答完以后还有时间,能够在把填空题答完后就核对一下。12书写要整洁要保持卷面的整洁和美观,以获得“印象分。字假如写得不好没关系,至少要写得工整,这样批改试卷的教师也会给一定的分数。相反假如本人思路对了,但是写得乱七八糟的很有可能被扣掉小部分分数。13保持良好的心态不要把本人弄的十分的紧张,就把他当作是一次很平常的考试去对待。数学只要静下心来才能把题答好。假如上来就紧张的不行,那本人本来会做的题,可能对于你来讲也
17、是一道难题。这部分其实与前面讲的选择做题顺序很有关系,你上来大题就做出了4个,对于你做其它的大题是一种自信心上的鼓舞,那其它的题做出来的概率就比拟大考研数学学习心得5考研高数考点预测:极限的计算1、等价无穷小的转化,只能在乘除时候使用,但是不是讲一定在加减时候不能用,前提是必须证明拆分后极限仍然存在,e的x次方1或者1+x的a次方1等价于Ax等等。全部熟记x趋近无穷的时候复原成无穷小。2、洛必达法则大题目有时候会有暗示要你使用这个方法。首先他的使用有严格的使用前提!必须是x趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况罢了,是必要条件还有一点
18、数列极限的n当然是趋近于正无穷的,不可能是负无穷!必须是函数的导数要存在!假设告诉你gx,没告诉你能否可导,直接用,无疑于找死!必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷应为无穷大于无穷小成倒数的关系所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于指数幂数方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,这就是为什么只要3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来
19、趋近于无穷的时候,LNx趋近于0。3、泰勒公式含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!看上去复杂,处理很简单!5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数,可能只需要知道它的范围结果就出来了!6、夹逼定理主要对付的是数列极限!这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7、等比等差数列公式应用对付数列极限q绝对值符号要小于1。8、各项的
20、拆分相加来消掉中间的大多数对付的还是数列极限能够使用待定系数法来拆分化简函数。9、求左右极限的方式对付数列极限例如知道xn与xn+1的关系,已知xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,由于极限去掉有限项目极限值不变化。10、两个重要极限的应用。这两个很重要!对第一个而言是x趋近0时候的sinx与x比值。第2个就假如x趋近无穷大,无穷小都有对有对应的形式第2个实际上是用于函数是1的无穷的形式当底数是1的时候要十分注意可能是用地两个重要极限11、还有个方法,非常方便的方法,就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的!x的x次方快于x!快于指数函数,快于幂数函数,
21、快于对数函数画图也能看出速率的快慢!当x趋近无穷的时候,他们的比值的极限一眼就能看出来了。12、换元法是一种技巧,不会对单一道题目而言就只需要换元,而是换元会夹杂其中。13、假设要算的话四则运算法则也算一种方法,当然也是夹杂其中的。14、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法,走投无路的时候能够考虑转化为定积分。一般是从0到1的形式。15、单调有界的性质,对付递推数列时候使用证明单调性!16、直接使用求导数的定义来求极限,一般都是x趋近于0时候,在分子上fx加减某个值加减fx的形式,看见了要十分注意当题目中告诉你F0=0时候f0导数=0的时候,就是暗示你一定要用导数定义!函
22、数是表皮,函数的性质也体如今积分微分中。例如他的奇偶性质他的周期性。还有复合函数的性质:1、奇偶性,奇函数关于原点对称偶函数关于轴对称偶函数左右2边的图形一样奇函数相加为0;2、周期性可以用在导数中在定积分中也有应用定积分中的函数是周期函数积分的周期和他的一致;3、复合函数之间是自变量与应变量互换的关系;4、还有个单调性。再求0点的时候可能用到这个性质!能够导的函数的单调性和他的导数正负相关:o再就是总结一下间断点的问题应为一般函数都是连续的所以间断点是对于间断函数而言的间断点分为第一类和第二类剪断点。第一类是左右极限都存在的左右极限存在但是不等跳跃的的间断点或者左右极限存在相等但是不等于函数
23、在这点的值可取的间断点;第二类间断点是震荡间断点或者是无穷极端点这也讲明极限即便不存在也有可能是有界的。考研数学学习心得6高数定理证明之微分中值定理:这一部分内容比拟丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。费马引理的条件有两个:1。fx0存在2。fx0为fx的极值,结论为fx0=0。考虑函数在一点的导数,用什么方法自然想到导数定义。我们能够根据导数定义写出fx0的极限形式。往下怎样推理关键要看第二个条件怎么用。“fx0为fx的极值翻译成数学语言即fxfx00,对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数
24、部分的正负号。若能得出函数部分的符号,怎样得到极限值的符号呢极限的保号性是个桥梁。费马引理中的“引理包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比拟熟悉。条件有三:“闭区间连续、“开区间可导和“端值相等,结论是在开区间存在一点即所谓的中值,使得函数在该点的导数为0。该定理的证明不好理解,需认真体会:条件怎么用怎样和结论建立联络当然,我们如今讨论该定理的证明是“马后炮式的:已经有了证明经过,我们看看怎么去理解把握。假如在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。
25、闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明经过中就要用到费马引理。我们比照这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话讲到这,可能有同学要讲:罗尔定理的证明并不难呀,由费马引理得结论不就行了。大方向对,但经过没这么简单。最少要讲清一点:费马引理的条件能否知足,为什么知足前面提过费马引理的条件有两个“可导和“取极值,“可导不难判定是成立的,那么“取极值呢似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联络。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联络呢不难想到最值
26、定理。那么最值和极值是什么关系这个点需要想清楚,由于直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。拉格朗日定理和柯西定理是用罗尔定理证出来的。把握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,
27、这两个的定理的证明经过中体现出来的基本思路,适用于证其它结论。以拉格朗日定理的证明为例,既然用罗尔定理证,那我们比照一下两个定理的结论。罗尔定理的结论等号右侧为零。我们能够考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的经过看等号左侧的式子是哪个函数求导后,把x换成中值的结果。这个经过有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,能够把中值换成x,再对得到的函数求不定积分。高数定理证明之求导公式:xx真题考了一个证明
28、题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比拟熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在xx年前从未考过的基本公式的证明,一般只会在基础阶段讲到。假如这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真考虑过该公式的证明经过,进而在考场上变得很被动。这里给xx考研学子提个醒:要重视基础阶段的温习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。当然,该公式的证明并不难。先考虑fxxx在点x0处的导数。函数在一点的导数自然用导数定义考察,能够根据导数定义写出一个极限式子。该极限为“0分之0型,但不能用洛必达法则,由于
29、分子的导数不好算乘积的导数公式恰好是要证的,不能用!。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有的项要和前后都有联络,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了fxxx在任意点的导数公式。高数定理证明之积分中值定理:该定理条件是定积分的被积函数在积分区间闭区间上连续,结论能够形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量x换成中值。怎样证明可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。能够根据此思路往下分析,不过更易理解的思路是考虑连续相关定理介值定理和零点存在定理,理由更充分些:上述两个连
30、续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。若我们选择了用连续相关定理去证,那么到底选择哪个定理呢这里有个小的技巧看中值是位于闭区间还是开区间。介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。那么何去何从,已经不言自明了。若顺利选中了介值定理,那么往下怎样推理呢我们能够比照一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数A。我们自然想到把积分中值定理的结论朝以上的形式变形。等式两边同时除以区间长度,就能到达我们的要求。当然,变形后等号一侧含有
31、积分的式子的长相还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。这个数就相当于介值定理结论中的A。接下来怎样推理,这就考察各位对介值定理的熟悉程度了。该定理条件有二:1。函数在闭区间连续,2。实数A位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到即A为闭区间上某点的函数值。再看若积分中值定理的条件成立否能推出介值定理的条件成立。函数的连续性不难判定,仅需讲明定积分除以区间长度这个实数位于函数的最大值和最小值之间即可。而要考察一个定积分的值的范围,不难想到比拟定理或估值定理。高数定理证明之微积分基本定理:该部分包括两个定理:变限积分求
32、导定理和牛顿莱布尼茨公式。变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论能够形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式怎样化简,笔者就不能剥夺读者考虑的权利了。单侧导数类似考虑。“牛顿莱布尼茨公式是联络微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志
33、着微积分完好体系的构成,从此微积分成为一门真正的学科。这段话精彩地指出了牛顿莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。该公式和变限积分求导定理的公共条件是函数fx在闭区间连续,该公式的另一个条件是Fx为fx在闭区间上的一个原函数,结论是fx在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判定变限积分求导定理的条件成立,故变限积分求导定理的结论成立。注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描绘一下,即fx对应的
34、变上限积分函数为fx在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以Fx等于fx的变上限积分函数加某个常数C。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。考研数学学习心得7考研数学线性代数冲刺必看的重点?向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对独立,能够看作是对核心内容的扩展。向量与线性方程组的内容联络很密切,很多知识点互相之间都有或明或暗的相关性。温习这两部分内容
35、最有效的方法就是彻底理顺众多知识点之间的内在联络,由于这样做首先能够保证做到真正意义上的理解,同时也是熟练把握和灵敏运用的前提。这部分的重要考点一是线性方程组所具有的两种形式矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联络。(1)齐次线性方程组与向量线性相关、无关的联络齐次线性方程组能够直接看出一定有解,由于当变量都为零时等式一定成立印证了向量部分的一条性质“零向量可由任何向量线性表示。齐次线性方程组一定有解又能够分为两种情况:1、有唯一零解;2、有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量
36、使上式成立;但向量部分中判定向量组能否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联络齐次线性方程组能否有非零解对应于系数矩阵的列向量组能否线性相关。能够设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。(2)齐次线性方程组的解与秩和极大无关组的联络同样能够以为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数。经过“秩-线性相关、无关-线性方程组解的断定的逻辑链条,就能够断定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量能够通过r个线性无关的解向量(基础解系)线性表示。(3)非齐次线性方程组
37、与线性表示的联络非齐次线性方程组能否有解对应于向量能否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。?行列式与矩阵行列式、矩阵是线性代数中的基础章节,从命题人的角度来看,能够像润滑油一般结合其它章节出题,因而必须熟练把握。行列式的核心内容是求行列式详细行列式的计算和抽象行列式的计算。其中详细行列式的计算又有低阶和高阶两种类型,主要方法是应用行列式的性质及按行(列)展开定理化为上下三角行列式求解;而对于抽象行列式而言,考点不在怎样求行列式,而在于结合后面章节内容的比拟综合的题。矩阵部分出题很灵敏,频繁出现的知识点包括矩阵各种运算律、矩阵相关的重要公式、矩阵可逆的断定及求逆、矩
38、阵的秩的性质、初等矩阵的性质等。?特征值与特征向量相对于前两章来讲,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容既有行列式、矩阵又有线性方程组和线性相关性,“牵一发而动全身。本章知识要点如下:1.特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。2.类似矩阵及其性质,需要区分矩阵的类似、等价与合同:3.矩阵可类似对角化的条件,包括两个充要条件和两个充分条件。充要条件一是n阶矩阵有n个线性无关的特征值;二是任意r重特征根对应有r个线性无关的特征向量。4.实对称矩阵及其类似对角化,n阶实对称矩阵必可正交类似于以其特征值为对角元素的对角阵。
39、?二次型这部分所讲的内容从根本上讲是特征值和特征向量的一个延伸,由于化二次型为标准型的核心知识为“对于实对称矩阵,必存在正交矩阵使其能够类似对角化,其经过就是上一章类似对角化在为实对称矩阵时的应用。这四个方面是历年考研数学线代部分的重点,希望考生以此为重点,由点及面,温习好线性代数这部分。考研数学学习心得8一、检查试卷,稳定心情拿到试卷以后不要着急做题,花一两分钟时间把卷子通篇看一下,检查一下考研数学试卷是不是23道题目,大致都是什么题型的题目。这样做有两个好处:一是能够有效防止因粗心大意而漏掉一些题目,漏题就太可惜了;二是能够加强本人的自信心,稳定心情,通过长达一年时间的温习,看了这么多参考
40、书,听了那么多考研课程,相信试卷中肯定有不少题型你是非常熟悉的,看了这些题目以后,你会感到非常高兴,自自信心倍增,本来紧张的心情也会放轻松,这样才能正常发挥。二、按序做题,先易后难考研数学题量都是23道题目,其中选择题8道,填空题6道,解答题9道。题目类型也是固定的,数学一和数学三14题是高数选择题,56题是线代选择题,78题是概率选择题;912题是高数填空题,13题是线代填空题,14题是概率填空题,1519题是高数解答题,2021题是线代解答题,2223题是概率解答题。数学二16题是高数选择题,78题是线代选择题;913是高数填空题,14题是线代填空题,1521题是高数解答题,2223题线代
41、解答题。选择题和填空题主要考察的是基本概念、基本公式、基本定理和基本运算,解答题包括计算题和证明题考察内容比拟综合,往往一个题目考察多个知识点,从近些年的试卷特点,题型都比拟常见,难度不算大,我们最好按题目顺序做,这样能稳定心情,很快进入状态,也不容易漏做题目,假如碰到本人不熟悉的题目也不要发慌,能够暂时放下接着做下一个题目。等容易的题目有把握的题目都做完之后,再静心研究有疑问的题目,但假如实在没有思路也要学会放弃,留出时间检查本人会做的题目,争取会做的题目不丢分,由于数学的分数最依靠的还是能否将会做的题都做对。此外,有些同学喜欢先做高数,再做线代,这样的做题顺序可以以,关键是看你平常训练时是
42、怎样训练的,选择合适本人的就是最好的,但在此提醒一下大家一定不要漏做题。三、合理分配答题时间根据以往考生的经历,一道客观题控制在3分钟左右,最多不要超过5分钟,解答题一般10分钟左右,根据难易程度适当调整。最后至少留出30分钟时间检查,确保会做的题目计算正确。考研线性代数考点预测:向量的数学定义首先回首一下,在中学我们是怎样表示向量的。中学数学中主要讨论平面上的向量。平面上的向量是能够平行移动的。两个互相平行且长度相等的向量我们以为是相等的。好,假设在平面直角坐标系中,对于平面上的任何一个向量,我们总是能够将其平移至起点坐标原点重合。这时向量终点的坐标同时也是向量的坐标。这样,我们就能够用一个
43、实数对表示一个平面向量了。一个实数对实际是我们线性代数中的一个二维行向量。而线代中讨论的向量是任意n维的。所以线性代数中的向量可视为中学向量的推广。下面是向量的数学定义:由n个实数a1,a2,an构成的有序实数组(a1,a2,an)称为一个n维行向量。类似可定义列向量。问个问题:向量和矩阵是什么关系?向量可视为特殊的矩阵(行数或列数为1的矩阵)。这是理解向量的一个很好的角度。由于学习向量时,我们已把矩阵讨论得很清楚了,所以通过矩阵理解向量就能省不少事。知道了什么是向量,那什么是向量组呢?向量一般来讲不是单独出现,而是成组出现的。我们把多个向量放在一起考虑,就构成了向量组。当然向量组的严格数学定
44、义也不难理解:由若干个同型向量构成的集合称为一个向量组。这里的“同型能够理解成矩阵同型,可以以用向量的语言描绘成:同为行向量或列向量且维数一样。考研数学学习心得91.知识方面十二月,最后的冲刺阶段,我们需要对知识进行宏观、整体上的把握,但是何为宏观上的把握,下面呢,我将通过一个例子来讲明我们应该怎样对知识有宏观上的把握。首先呢,我想问大家一个问题,考研数学的题型有哪几种?相信很多同学会告诉我,我问的这句话实在是过多余了,由于看过真题的人都知道,考试题型就是选择题、填空题和解答题。其实,大家告诉我的是考研数学的形式,而考研数学是最不注重形式的一门考试,比方讲求极限,它能够出如今选择题、填空题中,
45、可以以出如今解答题中,但是无论它以何种形式出现,我们都是一步步的进行求解,因而我们的考研数学是最不注重形式的一门考试。考研数学考试主要以计算题为主,下面我们再来看下三种题型,分别对我们考生有什么样的要求:(1)概念:概念题对大家有两个要求,一是概念的再现,比方讲导数,讲到导数,大家的头脑中就要不假思考的闪现出如下等式:二是理解概念本身、理解概念的变形,照旧以导数为例,我们还要知道下列形式也是导数的定义;(2)计算:计算题要求大家的做题速度要够快、准确率要够高,对于这个目的,我们没有什么捷径而言,唯有通过大量的习题训练才能够做得快、做的准;(3)证明:证明题是一直以来大家以为最难的一个部分,但是
46、对于这最难的部分,我们并不是素手无策的,由于该部分的内容是有迹可循的,通过我们对近三十年考研数学的真题进行分析,我们发现证明题的分值是比拟稳定的,题目数在1-2道,并且考察的内容也是能够被追溯的,就拿高等数学来讲吧,它出证明题的范围只要两个一是不等式的证明,一是中值定理。2.模考(1)形式与内容在最后的冲刺阶段,我们一定要注意模拟考试的形式是远远大于考试的内容的,大家都知道考研数学是上午的8:30-11:30,因而我们在模拟的时候,大家也要保证我们在这个时间段答题,一定要根据严格的时间来进行模拟考试。另外大家要注意,我们在模拟的时候,大家做题做到11点15分的时候就结束,我们要留出15分钟的机
47、动时间,由于在正式考试的时候可能会出现一些我们当前无法预知的问题,所以在模拟的时候要留出部分时间。(2)心态到了这个紧张的关键时刻,大家在做模拟题目的时候可能会碰到一些障碍,这些障碍可能直接影响大家当前的学习心情,削减备战精神,这种做法是非常不正确的,大家都知道真题的价值是远远高于模拟题目的,但是模拟题目的难度是高于真题的,所以大家碰到障碍的时候,无需久久挂心,烦恼的时候,莫不如将时间花费在查缺补漏上,所以大家这个阶段不要有消极的心态,大家一定要保证积极良好的状态,全面备战考试。(3)题目这个阶段我们仍然根据11月下旬的做题节拍,保证真题和模拟题的比例是2:1,平均两天一套题,认真的对待模拟考
48、试。考研数学学习心得10一、行列式部分,强化概念性质,熟练行列式的求法在这里我们需要明确下面几条:行列式对应的是一个数值,是一个实数,明确这一点能够帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,比拟重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。另外范德蒙行列式也是需要把握的;行列式的考察方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。二、矩阵部分,重视矩阵运算,把握矩阵秩的应用通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵