线性规划模型及matlab程序求解.doc

上传人:豆**** 文档编号:28553725 上传时间:2022-07-28 格式:DOC 页数:27 大小:85.50KB
返回 下载 相关 举报
线性规划模型及matlab程序求解.doc_第1页
第1页 / 共27页
线性规划模型及matlab程序求解.doc_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《线性规划模型及matlab程序求解.doc》由会员分享,可在线阅读,更多相关《线性规划模型及matlab程序求解.doc(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精品文档,仅供学习与交流,如有侵权请联系网站删除1 线性规划模型一、线性规划课题: 实例1:生产计划问题 假设某厂计划生产甲、乙两种产品,现库存主要材料有A类3600公斤,B类2000公斤,C类3000公斤。每件甲产品需用材料A类9公斤,B类4公斤,C类3公斤。每件乙产品,需用材料A类4公斤,B类5公斤,C类10公斤。甲单位产品的利润70元,乙单位产品的利润120元。问如何安排生产,才能使该厂所获的利润最大。建立数学模型:设x1、x2分别为生产甲、乙产品的件数。f为该厂所获总润。 max f=70x1+120x2 s.t9x1+4x23600 4x1+5x22000 3x1+10x23000

2、x1,x20归结出规划问题:目标函数和约束条件都是变量x的线性函数。形如:(1)min f T X s.tA Xb Aeq X =beqlbXub 其中X为n维未知向量,f T=f1,f2,fn为目标函数系数向量,小于等于约束系数矩阵A为mn矩阵,b为其右端m维列向量,Aeq为等式约束系数矩阵,beq为等式约束右端常数列向量。lb,ub为自变量取值上界与下界约束的n维常数向量。二线性规划问题求最优解函数: 调用格式:x=linprog(f,A,b) x=linprog(f,A,b,Aeq,beq) x=linprog(f,A,b,Aeq,beq,lb,ub) x=linprog(f,A,b,A

3、eq,beq,lb,ub,x0) x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options) x,fval=linprog() x, fval, exitflag=linprog() x, fval, exitflag, output=linprog() x, fval, exitflag, output, lambda=linprog() 说明:x=linprog(f,A,b)返回值x为最优解向量。 x=linprog(f,A,b,Aeq,beq) 作有等式约束的问题。若没有不等式约束,则令A= 、b= 。 x=linprog(f,A,b,Aeq,beq,lb,ub,

4、x0,options) 中lb ,ub为变量x的下界和上界,x0为初值点,options为指定优化参数进行最小化。Options的参数描述:Display 显示水平。 选择off 不显示输出;选择iter显示每一 步迭代过程的输出;选择final 显示最终结果。MaxFunEvals 函数评价的最大允许次数Maxiter 最大允许迭代次数TolX x处的终止容限 x,fval=linprog() 左端 fval 返回解x处的目标函数值。x,fval,exitflag,output,lambda=linprog(f,A,b, Aeq,beq,lb,ub,x0) 的输出部分: exitflag 描

5、述函数计算的退出条件:若为正值,表示目标函数收敛于解x处;若为负值,表示目标函数不收敛;若为零值,表示已经达到函数评价或迭代的最大次数。output 返回优化信息:output.iterations表示迭代次数;output.algorithm表示所采用的算法;outprt.funcCount表示函数评价次数。lambda 返回x处的拉格朗日乘子。它有以下属性: lambda.lower-lambda的下界; lambda.upper-lambda的上界; lambda.ineqlin-lambda的线性不等式; lambda.eqlin-lambda的线性等式。三 举例例1:求解线性规划问题

6、:max f=2x1+5x2s.t x14 x23 x1+x28 x1,x20先将目标函数转化成最小值问题:min(-f)=- 2x1-5x2程序: f=-2 -5; A=1 0;0 1;1 1; b=4;3;8; x,fval=linprog(f,A,b) f=fval*(-1) 结果: x = 23 fval = -19.0000maxf =19例2:minf=5x1-x2+2x3+3x4-8x5s.t2x1+x2-x3+x4-3x56 2x1+x2-x3+4x4+x57 0xj15j=1,2,3,4,5 程序: f=5 -1 2 3 -8; A=-2 1 -1 1 -3;2 1 -1 4

7、 1; b=6;7; lb=0 0 0 0 0; ub=15 15 15 15 15; x,fval=linprog(f,A,b,lb,ub) 结果:x = 0.0000 0.0000 8.0000 0.000015.0000minf =-104例3:求解线性规划问题: min f=5x1+x2+2x3+3x4+x5s.t2x1+x2-x3+x4-3x51 2x1+3x2-x3+2x4+x5-2 0xj1j=1,2,3,4,5程序: f=5 1 2 3 1; A=-2 1 -1 1 -3;2 3 -1 2 1; b=1;-2; lb=0 0 0 0 0; ub=1 1 1 1 1; x,fva

8、l,exitflag,output,lambda=linprog(f,A,b,lb,ub) 运行结果: Exiting: One or more of the residuals, duality gap, or total relative error has grown 100000 times greater than its minimum value so far: the primal appears to be infeasible (and the dual unbounded). (The dual residual )之後,并按入Enter键即可。例如: (5*2+1.3-

9、0.8)*10/25 ans =4.2000 MATLAB会将运算结果直接存入一变数ans,代表MATLAB运算後的答案(Answer)并显示其数值於萤幕上。小提示: 是MATLAB的提示符号(Prompt),但在PC中文视窗系统下,由於编码方式不同,此提示符号常会消失不见,但这并不会影响到MATLAB的运算结果。 我们也可将上述运算式的结果设定给另一个变数x: x = (5*2+1.3-0.8)*102/25 x = 42 此时MATLAB会直接显示x的值。由上例可知,MATLAB认识所有一般常用到的加(+)、减(-)、乘(*)、除(/)的数学运算符号,以及幂次运算()。 小提示: MATL

10、AB将所有变数均存成double的形式,所以不需经过变数宣告(Variable declaration)。MATLAB同时也会自动进行记忆体的使用和回收,而不必像C语言,必须由使用者一一指定.这些功能使的MATLAB易学易用,使用者可专心致力於撰写程式,而不必被软体枝节问题所干扰。 若不想让MATLAB每次都显示运算结果,只需在运算式最後加上分号(;)即可,如下例: y = sin(10)*exp(-0.3*42); 若要显示变数y的值,直接键入y即可: y y =-0.0045 在上例中,sin是正弦函数,exp是指数函数,这些都是MATLAB常用到的数学函数。下表即为MATLAB常用的基本

11、数学函数及三角函数: 小整理:MATLAB常用的基本数学函数 abs(x):纯量的绝对值或向量的长度 angle(z):复 数z的相角(Phase angle) sqrt(x):开平方 real(z):复数z的实部 imag(z):复数z的虚 部 conj(z):复数z的共轭复数 round(x):四舍五入至最近整数 fix(x):无论正负,舍去小数至最近整数 floor(x):地板函数,即舍去正小数至最近整数 ceil(x):天花板函数,即加入正小数至最近整数 rat(x):将实数x化为分数表示 rats(x):将实数x化为多项分数展开 sign(x):符号函数 (Signum functi

12、on)。 当x0时,sign(x)=1。 小整理:MATLAB常用的三角函数 sin(x):正弦函数 cos(x):馀弦函数 tan(x):正切函数 asin(x):反正弦函数 acos(x):反馀弦函数 atan(x):反正切函数 atan2(x,y):四象限的反正切函数 sinh(x):超越正弦函数 cosh(x):超越馀弦函数 tanh(x):超越正切函数 asinh(x):反超越正弦函数 acosh(x):反超越馀弦函数 atanh(x):反超越正切函数 变数也可用来存放向量或矩阵,并进行各种运算,如下例的列向量(Row vector)运算: x = 1 3 5 2; y = 2*x+

13、1 y = 3 7 11 5 小提示:变数命名的规则 1.第一个字母必须是英文字母 2.字母间不可留空格 3.最多只能有19个字母,MATLAB会忽略多馀字母 我们可以随意更改、增加或删除向量的元素: y(3) = 2 % 更改第三个元素 y =3 7 2 5 y(6) = 10 % 加入第六个元素 y = 3 7 2 5 0 10 y(4) = % 删除第四个元素, y = 3 7 2 0 10 在上例中,MATLAB会忽略所有在百分比符号(%)之後的文字,因此百分比之後的文字均可视为程式的注解(Comments)。MATLAB亦可取出向量的一个元素或一部份来做运算: x(2)*3+y(4)

14、 % 取出x的第二个元素和y的第四个元素来做运算 ans = 9 y(2:4)-1 % 取出y的第二至第四个元素来做运算 ans = 6 1 -1 在上例中,2:4代表一个由2、3、4组成的向量若对MATLAB函数用法有疑问,可随时使用help来寻求线上支援(on-line help):help linspace 小整理:MATLAB的查询命令 help:用来查询已知命令的用法。例如已知inv是用来计算反矩阵,键入help inv即可得知有关inv命令的用法。(键入help help则显示help的用法,请试看看!) lookfor:用来寻找未知的命令。例如要寻找计算反矩阵的命令,可键入 lo

15、okfor inverse,MATLAB即会列出所有和关键字inverse相关的指令。找到所需的命令後 ,即可用help进一步找出其用法。(lookfor事实上是对所有在搜寻路径下的M档案进行关键字对第一注解行的比对,详见後叙。) 将列向量转置(Transpose)後,即可得到行向量(Column vector): z = x z = 4.0000 5.2000 6.4000 7.6000 8.8000 10.0000 不论是行向量或列向量,我们均可用相同的函数找出其元素个数、最大值、最小值等: length(z) % z的元素个数 ans = 6 max(z) % z的最大值 ans = 1

16、0 min(z) % z的最小值 ans = 4 小整理:适用於向量的常用函数有: min(x): 向量x的元素的最小值 max(x): 向量x的元素的最大值 mean(x): 向量x的元素的平均值 median(x): 向量x的元素的中位数 std(x): 向量x的元素的标准差 diff(x): 向量x的相邻元素的差 sort(x): 对向量x的元素进行排序(Sorting) length(x): 向量x的元素个数 norm(x): 向量x的欧氏(Euclidean)长度 sum(x): 向量x的元素总和 prod(x): 向量x的元素总乘积 cumsum(x): 向量x的累计元素总和 cu

17、mprod(x): 向量x的累计元素总乘积 dot(x, y): 向量x和y的内 积 cross(x, y): 向量x和y的外积 (大部份的向量函数也可适用於矩阵,详见下述。) 若要输入矩阵,则必须在每一列结尾加上分号(;),如下例: A = 1 2 3 4; 5 6 7 8; 9 10 11 12; A = 1 2 3 4 5 6 7 8 9 10 11 12 同样地,我们可以对矩阵进行各种处理: A(2,3) = 5 % 改变位於第二列,第三行的元素值 A = 1 2 3 4 5 6 5 8 9 10 11 12 B = A(2,1:3) % 取出部份矩阵B B = 5 6 5 A = A

18、 B % 将B转置後以行向量并入A A = 1 2 3 4 5 5 6 5 8 6 9 10 11 12 5 A(:, 2) = % 删除第二行(:代表所有列) A = 1 3 4 5 5 5 8 6 9 11 12 5 A = A; 4 3 2 1 % 加入第四列 A = 1 3 4 5 5 5 8 6 9 11 12 5 4 3 2 1 A(1 4, :) = % 删除第一和第四列(:代表所有行) A = 5 5 8 6 9 11 12 5 这几种矩阵处理的方式可以相互叠代运用,产生各种意想不到的效果,就看各位的巧思和创意。 小提示:在MATLAB的内部资料结构中,每一个矩阵都是一个以行为

19、主(Column-oriented )的阵列(Array)因此对於矩阵元素的存取,我们可用一维或二维的索引(Index)来定址。举例来说,在上述矩阵A中,位於第二列、第三行的元素可写为A(2,3) (二维索引)或A(6)(一维索引,即将所有直行进行堆叠後的第六个元素)。 此外,若要重新安排矩阵的形状,可用reshape命令: B = reshape(A, 4, 2) % 4是新矩阵的列数,2是新矩阵的行数 B = 5 8 9 12 5 6 11 5 小提示: A(:)就是将矩阵A每一列堆叠起来,成为一个行向量,而这也是MATLAB变数的内部储存方式。以前例而言,reshape(A, 8, 1)

20、和A(:)同样都会产生一个8x1的矩阵。 MATLAB可在同时执行数个命令,只要以逗号或分号将命令隔开: x = sin(pi/3); y = x2; z = y*10,z = 7.5000 若一个数学运算是太长,可用三个句点将其延伸到下一行: z = 10*sin(pi/3)* . sin(pi/3); 若要检视现存於工作空间(Workspace)的变数,可键入who: who Your variables are: testfile x 这些是由使用者定义的变数。若要知道这些变数的详细资料,可键入: whos Name Size Bytes Class A 2x4 64 double ar

21、ray B 4x2 64 double array ans 1x1 8 double array x 1x1 8 double array y 1x1 8 double array z 1x1 8 double array Grand total is 20 elements using 160 bytes 使用clear可以删除工作空间的变数: clear A A ? Undefined function or variable A. 另外MATLAB有些永久常数(Permanent constants),虽然在工作空间中看不 到,但使用者可直接取用,例如: pi ans = 3.1416

22、下表即为MATLAB常用到的永久常数。 小整理:MATLAB的永久常数 i或j:基本虚数单位eps:系统的浮点(Floating-point)精确度 inf:无限大, 例如1/0 nan或NaN:非数值(Not a number) ,例如0/0 pi:圆周率 p(= 3.1415926.) realmax:系统所能表示的最大数值 realmin:系统所能表示的最小数值 nargin: 函数的输入引数个数 nargin: 函数的输出引数个数 1-2、重复命令 最简单的重复命令是for圈(for-loop),其基本形式为: for 变数 = 矩阵; 运算式; end 其中变数的值会被依次设定为矩阵

23、的每一行,来执行介於for和end之间的运算式。因此,若无意外情况,运算式执行的次数会等於矩阵的行数。 举例来说,下列命令会产生一个长度为6的调和数列(Harmonic sequence): x = zeros(1,6); % x是一个16的零矩阵 for i = 1:6, x(i) = 1/i; end 在上例中,矩阵x最初是一个16的零矩阵,在for圈中,变数i的值依次是1到6,因此矩阵x的第i个元素的值依次被设为1/i。我们可用分数来显示此数列: format rat % 使用分数来表示数值 disp(x) 1 1/2 1/3 1/4 1/5 1/6 for圈可以是多层的,下例产生一个1

24、6的Hilbert矩阵h,其中为於第i列、第j行的元素为 h = zeros(6); for i = 1:6, for j = 1:6, h(i,j) = 1/(i+j-1); end end disp(h) 1 1/2 1/3 1/4 1/5 1/6 1/2 1/3 1/4 1/5 1/6 1/7 1/3 1/4 1/5 1/6 1/7 1/8 1/4 1/5 1/6 1/7 1/8 1/9 1/5 1/6 1/7 1/8 1/9 1/10 1/6 1/7 1/8 1/9 1/10 1/11 小提示:预先配置矩阵 在上面的例子,我们使用zeros来预先配置(Allocate)了一个适当大小的

25、矩阵。若不预先配置矩阵,程式仍可执行,但此时MATLAB需要动态地增加(或减小)矩阵的大小,因而降低程式的执行效率。所以在使用一个矩阵时,若能在事前知道其大小,则最好先使用zeros或ones等命令来预先配置所需的记忆体(即矩阵)大小。 在下例中,for圈列出先前产生的Hilbert矩阵的每一行的平方和: for i = h, disp(norm(i)2); % 印出每一行的平方和 end 1299/871 282/551 650/2343 524/2933 559/4431 831/8801 在上例中,每一次i的值就是矩阵h的一行,所以写出来的命令特别简洁。 令一个常用到的重复命令是whil

26、e圈,其基本形式为: while 条件式; 运算式; end 也就是说,只要条件示成立,运算式就会一再被执行。例如先前产生调和数列的例子,我们可用while圈改写如下: x = zeros(1,6); % x是一个16的零矩阵 i = 1; while i 0.5, disp(Given random number is greater than 0.5.); end Given random number is greater than 0.5. 1-4、集合多个命令於一个M档案 若要一次执行大量的MATLAB命令,可将这些命令存放於一个副档名为m的档案,并在 MATLAB提示号下键入此档案

27、的主档名即可。此种包含MATLAB命令的档案都以m为副档名,因此通称M档案(M-files)。例如一个名为test.m的M档案,包含一连串的MATLAB命令,那麽只要直接键入test,即可执行其所包含的命令: pwd % 显示现在的目录 ans = D:MATLAB5bin cd c:datamlbook % 进入test.m所在的目录 type test.m % 显示test.m的内容 % This is my first test M-file. % Roger Jang, March 3, 1997 fprintf(Start of test.m!n); for i = 1:3, fpr

28、intf(i = %d - i3 = %dn, i, i3); end fprintf(End of test.m!n); test % 执行test.m Start of test.m! i = 1 - i3 = 1 i = 2 - i3 = 8 i = 3 - i3 = 27 End of test.m! 小提示:第一注解行(H1 help line) test.m的前两行是注解,可以使程式易於了解与管理。特别要说明的是,第一注解行通常用来简短说明此M档案的功能,以便lookfor能以关键字比对的方式来找出此M档案。举例来说,test.m的第一注解行包含test这个字,因此如果键入lookfor test,MATLAB即可列出所有在第一注解行包含test的M档案,因而test.m也会被列名在内。 严格来说,M档案可再细分为命令集(Scripts)及函数(Functions)。前述的test.m即为命令集,其效用和将命令逐一输入完全一样,因此若在命令集可以直接使用工作空间的变数,而且在命令集中设定的变数,也都在工作空间中看得到。函数则需要用到输入引数(

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁