《采用半导体制冷片的温控系统的设计.doc》由会员分享,可在线阅读,更多相关《采用半导体制冷片的温控系统的设计.doc(40页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除湖 南 科 技 大 学毕 业 设 计( 论 文 )题目采用半导体制冷片的温控系统的设计作者方云熠学院信息与电气工程学院专业自动化学号1204020309指导教师曾照福二一六 年 五 月 十五 日湖 南 科 技 大 学毕业设计(论文)任务书 信息与电气工程 学院 通信工程 系系主任: (签名) 年 月 日学生姓名: 方云熠 学号: 1204020309 专业: 自动化 1 设计(论文)题目及专题: 采用半导体制冷片的温控系统的设计 2 学生设计(论文)时间:自 2015 年 10 月 8 日开始至 2016 年 5 月 25 日止3 设计(论文)所
2、用资源和参考资料:1 何道清,张禾,谌海云.传感器与传感器技术:3版M.北京:科学出版社,2014. 2 何希才,任力颖,杨静.实用传感器接口电路实例M.北京:中国电力出版社,2007. 3 王南阳.单片优质语音录放集成电路应用手册M.北京:机械工业出版社,2006. 4 来清民.传感器与单片机接口及实例M.北京:北京航空航天大学出版社,2008. 期刊相关文章 4 设计(论文)应完成的主要内容:(1) 半导体制冷片温控系统的方案设计;(2) 半导体制冷片温控系统的硬件设计;(3) 半导体制冷片温控系统的软件设计;(4)系统调试。要求:能控制制冷温度为-5-0,中的任意温度,可显示、语音播报当
3、前温度值,能将温度值存储。 5 提交设计(论文)形式(设计说明与图纸或论文等)及要求:(1)撰写设计报告;(2)设计报告要求字数1.5万字左右,提供电子版和纸质版;(3)设计报告包括目录,中英文摘要,关键词,方案选择及确定,设计过程及参数计算,软件流程图及源程序,调试方法及步骤,小结等;(4)提供硬件电路原理图,印制电路板图,元器件清单。6 发题时间: 2015 年 10 月 5 日指导教师: (签名)学 生: (签名)【精品文档】第 - 31 - 页湖 南 科 技 大 学毕业设计(论文)指导人评语主要对学生毕业设计(论文)的工作态度,研究内容与方法,工作量,文献应用,创新性,实用性,科学性,
4、文本(图纸)规范程度,存在的不足等进行综合评价指导人: (签名)年 月 日指导人评定成绩: 湖 南 科 技 大 学毕业设计(论文)评阅人评语主要对学生毕业设计(论文)的文本格式、图纸规范程度,工作量,研究内容与方法,实用性与科学性,结论和存在的不足等进行综合评价评阅人: (签名)年 月 日评阅人评定成绩: 湖 南 科 技 大 学毕业设计(论文)答辩记录日期: 学生: 学号: 班级: 题目: 提交毕业设计(论文)答辩委员会下列材料:1 设计(论文)说明书共页2 设计(论文)图 纸共页3 指导人、评阅人评语共页毕业设计(论文)答辩委员会评语:主要对学生毕业设计(论文)的研究思路,设计(论文)质量,
5、文本图纸规范程度和对设计(论文)的介绍,回答问题情况等进行综合评价答辩委员会主任: (签名)委员: (签名)(签名)(签名)(签名)答辩成绩: 总评成绩: 摘 要随着工业技术的不断发展和相关领域的需求,对于产品、设备的工作温度要求越来越苛刻,而对于微型化设备或器件的温度控制,半导体制冷器由于其无机械运动、不需要化学制冷剂、无污染、体积小且能够改变形状等优点,在微型化器件温度控制领域正扮演着越来越重要的角色。采用半导体制冷片的温控系统主要实现对目标系统的温度恒定作用,采用STC15系列单片机作为核心处理器,单片机接收温度传感器的反馈信号,通过内部PID控制算法处理,输出一定占空比的PWM信号,然
6、后经过功率驱动电路驱动半导体制冷片制冷,最终实现对目标系统温度恒定的控制目的。系统能通过液晶显示模块实时显示当前温度值,能通过语音播报温度值,也能通过键盘设置所需温度值,使系统能适应于不同的应用场合。关键词:单片机;半导体制冷;温度控制;PID;PWMABSTRACTWith the continuous development of industrial technology and related areas of demand, for products and equipment operating temperature more and more demanding require
7、ments, and for the miniaturization of equipment or device temperature control, semiconductor cooler because of the no mechanical moving and does not require a chemical refrigerant, no pollution, small volume and can change shape, etc., in the miniaturization of the device temperature control field i
8、s playing a more and more important role. The temperature control system of semiconductor refrigeration piece mainly to achieve the objectives of the system of constant temperature effect, using stc15 Series MCU as the core processor, MCU receives the feedback signal of the temperature sensor, throu
9、gh internal PID control algorithm to deal with, the output must account for a duty cycle of the PWM signal, and then through the power drive circuit to drive the semiconductor refrigeration piece of refrigeration, and ultimately achieve the goal of target system of constant temperature control. The
10、system can display the current temperature value through the liquid crystal display module, can broadcast the temperature value through the voice, also can set the desired temperature value through the keyboard, so that the system can adapt to different applications.Key words: Single-chip Microcompu
11、ter;Semiconductor refrigeration;Temperature control;PID;PWM目 录第一章 绪 论11.1 课题研究意义11.2 采用半导体制冷技术的温控系统的研究现状及发展11.3 半导体制冷工作原理21.4 课题主要研究内容2第二章 半导体制冷温控系统总体方案设计32.1 半导体制冷温控系统的组成框图和参数指标32.2 半导体制冷片的选择32.3 温度传感器的选择42.4 单片机的选择42.5 温控算法的选择42.6 语音芯片的选择5第三章 半导体制冷温控系统硬件设计63.1 系统硬件框图63.2 温度传感器DS18B20电路设计73.3 半导体制冷
12、片驱动电路设计83.4 键盘输入设计93.5 液晶显示输出设计93.5.1 字符型LCD1602概述93.5.2 LCD1602与单片机的接口113.6 实时时钟模块设计113.7 语音播报模块设计12第四章 半导体制冷温控系统的软件设计144.1 系统主程序设计144.2 温度检测程序设计154.3 温控算法程序设计184.4 温度设定与显示程序设计194.4.1 温度设定程序设计194.4.2 温度显示程序设计204.5 时钟模块程序设计204.6 温度语音播报程序设计21第五章 系统调试235.1 软件开发环境235.2 PID参数整定235.3 调试结果25第六章 结论26参 考 文
13、献27致 谢28附录A:系统原理图29附录B:PCB图30附录C:元器件清单31附录D:实物图33附录E:主程序34第一章 绪 论1.1 课题研究意义基于环境友好、无污染、低噪音、安全可靠的产品要求以及热电材料快速发展的背景下,一种以帕尔贴效应为主要理论基础的新型制冷方式半导体制冷(亦称温差电制冷或热电制冷),逐渐被人们所关注和研究,并且正在逐步走入我们的日常生活。半导体制冷的优点:(1)噪声小;(2)安装方便;(3)可以根据所需改变形状,使用于某些特殊需要的场所,如应用于微型化设备或是器件的温度控制方面,十分方便;(4)不用化学制冷剂,绿色无污染;(5)半导体制冷速度比较快,反应快。半导体制
14、冷的工作性质:(1)无机械运动;(2)在小空间范围内,制冷或制热的速度快,效果比较好,时间比较短;(3)利用相关的电路控制,如采用H桥电路可以实现半导体制冷器的冷端和热端的迅速转换;(4)半导体制冷片通过改变输入电流或电压大小,能够实现对制冷片功率的自动控制;(5)半导体单个制冷功率较小,但是可以通过串联或并联的方式增大半导体制冷的功率1。在温度控制技术中,主要有吸收式制冷,压缩机制冷等,然而上述的几个制冷方式,在一些微型化设备或器件中要实现制冷,却难以实现对既定目标的温度恒定进行精确的自动控制。随着微型电子技术的高速发展,微型电子器件运用得越来越广泛。然而很多电子元器组件一旦温度过高会影响其
15、性能,为保持良好的性能要求在恒温或者是在低温的条件下工作。而且电子元器件的体积一般都比较小,而半导体制冷片能够根据电子器件的具体大小改变形状,十分便利。半导体制冷片,通上足够的直流电就能立马制冷,制冷功率适合于小功率设备,并且通过调节半导体制冷片的输入电流从而调节输出功率,能够使微型元器件保持在稳定的工作环境,保护其电路结构,确保其稳定工作。半导体制冷技术对于一些温度可调且制冷功率不高的场所十分适用,如微型化设备或器件的温度控制。鉴于微型化设备或器件的温度控制需求以及半导体制冷技术的不断发展,半导体制冷技术用于微型化温度控制有着充足的现实意义,因而提出了本研究课题。1.2 采用半导体制冷技术的
16、温控系统的研究现状及发展自19世纪初伊始,塞贝克和帕尔帖发现温差电流现象,热电制冷正式进入人们视野。然而19世纪50年代前,由于转化效率很低很低,半导体制冷技术一直停滞不前,直至19世纪50-80年代,由于半导体材料的发现,转化效率得到很大提高。到了19世纪80年代以后,特别是地球环境持续遭到破坏,半导体制冷,无污染,受到各国的青睐。国外在采用半导体制冷技术用于温度控制方面,起步早,经验较为丰富。西方发达国家的半导体制冷技术已渗透到军用、民用、医用等各个领域。如德国的Micropelt公司在2010年发布了世界上最小的高效半导体制冷器(MPC-D40X)2,又于2012年推出了全球首款集成型薄
17、膜热电转换芯片。自19世纪50年代开始,我国开始研究半导体材料,并取得了一定成效。军用方面,以半导体制冷为原理的航天冰箱成功应用于神舟八号飞船。民用方面,汽车小型冷藏箱、冷热两用型饮水机等产品逐渐出现在市场上。虽然我国的在半导体制冷技术的研制方面发展很快,自主研发的温度控制设备虽逐步趋于完善,但是理论研究与国外差距依然较大,同进口设备相比,仍存有一定差距。但由于半导体制冷材料的研究还不够深入、热端散热不快等导致制冷效率低等原因,使用半导体制冷技术的温控产品还没有大规模使用,还不能够生产出具备足够制冷量的制冷器件。 1.3 半导体制冷工作原理半导体制冷原理图如图1.1所示。图1.1 半导体制冷原
18、理图在半导体材料的P-N结两端接上直流电,便能够实现一端制冷,另一端制热。当电流从N流向P方向时,接触处就会吸热,形成冷端;当电流从P流向N方向时,接触处就会放热,形成热端3。1.4 课题主要研究内容本文基于半导体制冷技术和单片机的控制技术,采用半导体制冷片对目标系统进行温度控制的方案设计。从半导体制冷片温控系统的硬件和软件方面分别进行设计和详细的说明,能控制制冷温度为-5-0中的任意温度,可显示、语音播报当前温度值,能将温度值存储。第二章 半导体制冷温控系统总体方案设计2.1 半导体制冷温控系统的组成框图和参数指标半导体制冷温控系统的组成框图如图2.1所示。主要由单片机系统,温度检测模块,键
19、盘输入模块,语音播报模块,液晶显示模块,以及功率驱动电路组成。图2.1 半导体制冷温控系统的组成框图在本研究课题中,通过单片机控制半导体制冷片的功率输出,从而实现对目标目标系统温度的控制,并且通过温度传感器的检测实时温度并进行反馈,整个温控系统形成闭环控制,可以实现对目标器件或设备温度的精确控制。温度传感器检测目标系统的实时温度并反馈给单片机,单片机进行自动储存并控制温度语音播报模块和液晶显示模块分别播报和显示当前温度值,同时,单片机根据实际温度和设定温度,为提高温度控制精度,引入智能控制算法,控制输出PWM占空比大小,使目标系统稳定在设定温度。半导体制冷温控系统技术指标如下:温度控制范围:-
20、50;温度控制精度:0.5;温度达到稳定时间:小于3分钟。2.2 半导体制冷片的选择TECI-12706参数如表2.1所示。 表2.1 TECI-12706参数型号电堆数电流Imax(A)最大工作电压Umax(V)最大产冷量Qcmax(W)最大温差Tmax()外形尺寸(mm)电阻()重量(g)热端温度Th=27LWHTECI-12706127615.256.57040403.91.9423为选择适合本研究课题的半导体制冷片(TEC,Thermoelectric Cooler),从TEC的制冷功率、最大产冷量以及能够达到的最大温差等多个参数为参考依据,筛选满足本研究课题要求的TEC。TECI-1
21、2706,最大电流为6A,最大工作电压为15.4V。各参数满足本研究课题的设计要求。2.3 温度传感器的选择方案一:采用常见的温度传感器,如热电偶或热电阻。两者主要优缺点是:热电偶价格便宜,测量范围也较广,但测量精度低,需要进行冷端补偿,且电路设计复杂;热电阻测温精度较高,但时需要标准温度电阻与之匹配才能使用4,并且由于热电阻的不稳定性,导致测量温度容易受到外界干扰。方案二:采用温度传感器DS18B20。体积小,检测的温度数据能够进行远距离传输而且数字信号的传输能够有效抗干扰,最关键的是与单片机接口只有一根数据线DQ,与单片机连接十分方便,能够减少占用单片机的I/O口。DS18B20测量温度范
22、围覆盖半导体制冷温度范围,完全能够满足本研究课题的技术参数指标,并且与单片机连接只需要占用一个I/O口,并且测量精度高5。综上分析,选择方案二,可以简化电路,减少占用单片机I/O接口,提高电路的稳定性,减小测量误差。2.4 单片机的选择本次课题中采用STC15系列STC15F2K60S2单片机作为整个系统的核心处理器,较之传统的51系列单片机,内置模块更加丰富,如A/D、D/A转换等。STC15F2K60S2单片机是STC15系列单片机的典型产品,内部有大容量2048字节的SRAM,1KB的EEPROM ,高精度R/C时钟,内部时钟5-35Hz可选,8-64KB Flash存储器,14个中断源
23、,2个16位定时器/计数器,2个全双工的异步串行口(UART),3通道捕获、比较单元PWM(Pulse Width Modulation,脉冲宽度调制)、PCA(Programmable Counter Array,可编程计数器阵列)、CCP(Capture/Compare/PWM ,输入捕捉/输出比较/脉宽调制),高度集中的A/D模块,4个 8位可编程的并行I/O口6。特别是STC15F2K60S2单片机内部内置PWM和A/D模块,对于本系统设计中功率驱动电路的PWM控制方式十分便利。在本次设计的系统中,单片机首先控制温度传感器检测温度,并读取温度传感器反馈的当前温度值,然后根据实际温度和设
24、定温度,进行PID(Proportion-Integral-Derivative,比例-积分-微分控制器)控制,改变输出PWM占空比大小,同时控制液晶显示和播报模块播报温度。2.5 温控算法的选择(1)采用PID控制比例积分微分控制称为PID控制。比例控制(P)方法简单易行,但是存在有稳态误差。积分控制(I)是将系统误差积累到一起进行积分,即便是很小的误差经过长时间的积累,能够对误差进行放大从而进行有效调节,降低甚至消除系统的稳态误差。微分控制(D)能减小超调量和调节时间,但是微分控制对干扰信号有很强的放大作用,因此微分控制不能单独存在。在温控系统中,量化最近三次的温度偏差和偏差的变化率,整定
25、比例、积分、微分系数,再进行分析和计算出PID控制信号,调整输出PWM占空比大小。(2)采用神经网络控制人工神经网络(Artificial Neural Network,ANN)是模拟生物神经细胞记忆和处理信息的方法。神经网络由大量简单的处理单元(节点或神经元)相互连接形成各种复杂网络,拓扑结构算法各有不同,其中BP (Back Propagation)算法应用最为广泛7。人工神经网络能够进行自我学习和记忆联想,可以对外界环境的变化做精确地估算,而且抗干扰强,软件编程也比较方便。但是由于温度的影响因素众多,如天气、气压、被制冷物体性质等,难以建立与之相类似的数理模型8。(3)采用模糊控制在温度
26、控制系统中,模糊控制过程为:首先进行模糊化,对温度偏差采用精确量模糊化,形成模糊模型。然后进行与规则库进行对比。对比后进行模糊推理。最后解模糊,将推理得到的控制量作为温度控制输出,自动调节相应的执行模块,达到控制目标温度的目的。同传统的PID控制比较,参数变化不敏感,不要求掌握受控对象的精确数学模型,但是依赖于操作人员的经验知识和直观判断9。在本课题中,温度控制精度精度要求不是很高为0.5,并且PID控制结构简单,比例、微分、积分系数的参数整定也不是太麻烦,程序调试也相对而言容易调试,能达到本研究课题中目标系统的温度控制要求。综上所述,本课题选用PID控制算法。2.6 语音芯片的选择方案一:选
27、用语音芯片如ISD4004系列芯片。芯片所有的操作命令都由单片机通过串行通信接口送入并进行控制。使用ISD4004系列芯片,需要提前进行对应的录音,把录制的语音储存在芯片中,需要使用时再进行调用。虽然录制的语音可以多次进行录放,而且语音还原效果也还不错。但是使用该芯片,需要进行录音,占用单片机I/O口高达5个,压缩了其它模块与单片机的连接I/O接口,而且进行语音播放背景噪音较大。方案二:选用中文语音合成芯片SYN6288芯片。SYN6288接收单片机中储存的温度数据,将文本数据转换为语音进行播放。SYN6288与单片机通过RxD、TxD接口相连,占用单片机I/O口少,而且SYN6288在数字、
28、符号识别方面更加精准,语音合成效果也更加自然10。中文合成芯片不需要进行录音,可以省去很多的步骤让设计变得更加简单。SYN6288语音模块与传统的语音芯片相比,不需要进行语音的录制,并且其与单片机接口更加简单,而且价格适当,满足本系统的实时播报系统温度值的设计要求。综合考虑,选择方案二,采用SYN6288模块。第三章 半导体制冷温控系统硬件设计3.1 系统硬件框图图3.1是半导体制冷温控系统的硬件框图。图3.1 半导体制冷温控系统硬件框图开环控制因其容易实现,在温控领域应用较为广泛,主要应用于单一温控对象或是粗略温控的情况下,如实验室的热水器,简单的温度报警器等。其结构简单,由控制直接作用于执
29、行单元,无反馈回路,难以实现快速调节和精确控制。釆用闭环控制方式,可以实现较稳定并且相对可操控的温度控制。闭环控制是指测量模块、控制模块、执行模块、被控模块构成回路,可实现自动控制2。在本研究课题的温控系统中,采用闭环控制,温度传感器(测量模块)检测目标系统实时温度,送入单片机(控制模块),单片机根据实时温度与设定的目标温度值,实行PID控制,自动调节PWM占空比大小,并驱动半导体制冷片(执行模块)对目标系统(被控模块)的温度进行调节,正是由于负反馈的存在,现场温度才会稳定在目标值附近。闭环控制原理图如图3.2所示,由于本课题对制冷温度调节值比较大,且对温度控制精度有较高要求,所以本课题设计引
30、入PID控制和闭环负反馈控制。图3.2 闭环控制原理图系统的工作原理如下:半导体制冷温控系统采用的51系列的升级版本STC15系列单片机作为控制核心器。DS18B20检测目标系统的温度,反馈至单片机中,单片机对温度值进行处理并存储,然后控制LCD1602显示实时温度,并且通过SYN6288实时播报当前温度。同时,为提高温度控制精度,单片机采用PID控制,通过比较温度传感器反馈的实际温度和设定温度,调节PWM输出占空比。而驱动半导体制冷片的制冷额定电流高达4.5A,而单片机输出的电流只有几十毫安,不足以驱动半导体制冷片制冷,所以需增添一个功率驱动电路,以增大单片机输出的微小电流,以驱动半导体制冷
31、片正常工作,达到温控的目的。3.2 温度传感器DS18B20电路设计本次设计温度检测反馈模块,并与单片机STC15之间进行通信的硬件设备是温度传感器DS18B20。DS18B20和单片机之间采用单总线连接方式,有三个引脚,分别为VDD,DQ,GND。每个温度传感器有其不同的光刻ROM中的64位地址序列码,存在于温度传感器的内部存储器中,在检测温度的时候,通过读取地址序列码的就能区分传感器。本课题研究只需要对某个固定的器件或空间进行温度检测,所以只需用到一个DS18B20来测量温度。DS18B20温度传感器的结构及引脚图,如图3.3所示。图3.3 DS18B20温度传感器结构及引脚图温度传感器的
32、各项参数及引脚说明如表3.1所示。表3.1 DS18B20参数工作电压3.3V-5V测量范围-55+125精度及温度范围精度0.5 (-10+85)分辨率0.0625引脚DQ数据I/O引脚VDD可选电源电压引脚GND地DS18B20温度传感器和单片机之间的连接图,如图3.4所示。DS18B20通过单根数据线DQ与单片机I/O口P3.2相连,同时在数据线DQ上串联一个上拉电阻,接5V电源,检测到的温度反馈数据和单片机的控制指令都通过DQ数据线进行双向通信。本研究课题中温度传感器采用直接从单片机接口引出供电,也就是采用外部电源供电方式。图3.4 DS18B20温度传感器与单片机连接图3.3 半导体
33、制冷片驱动电路设计DS18B20温度传感器检测的实际温度反馈信号经过单片机的I/O口,作为偏差比较信号输入单片机,单片机进行PID控制后,调节PWM占空比输出信号,但是该输出信号十分微弱,只能控制一些芯片、元器件,驱动半导体制冷片的制冷额定电流高达4.5A,而单片机输出的电流只有几十毫安,不足以驱动半导体制冷片制冷,所以需要设计一个半导体制冷功率驱动电路。图3.5为半导体制冷片的功率驱动电路11。通过改变电流方向,可以实现半导体制冷片制冷或制热的转换,由于本次设计只需要制冷,所以不考虑驱动电路中电流的改向。单片机通过I/O口P3.2输出PWM信号,Q2、Q3构成的推挽电路、光电耦合TLP250
34、和场效应管IRF540和滤波电路控制半导体制冷片制冷。图3.5 半导体制冷片的功率驱动电路本次设计的控制思路是单片机根据温度传感器检测的反馈温度,和设定温度进行比较,通过PID控制改变PWM脉宽调制方波占空比大小。PWM驱动TEC又被称作是开关模式驱动,其在PWM作用下输出功率可调。相比于线性驱动,PWM驱动可显着降低MOS管产热,因为场效应管只有在导通时才有电流且MOS管导通电阻很小,工作效率高达80%-90%,反应速度更快,缺点是MOS管的通断会引入噪声,有效地抑制纹波电压的方法是加入滤波电路11。虽然,用来驱动TEC可以用集成了PWM方式的专用温控驱动芯片LTC1923,其能带动大电流和
35、大功率的专用芯片,但是考虑其成本,本课题设计并不采用。半导体功率驱动电路设计中,光电耦合TLP250驱动能力最大达到1.5A,开关时间最大为0.5s,完全能够满足本设计的要求。光电耦合TLP250的作用是能够将控制电路和驱动电路隔离开,防止驱动电路的强电流影响控制电路的弱电流,能够保护控制电路,另外还可以驱动场效应管12。Q2、Q3两个三极管构成推挽电路,作用是增加驱动能力,提高驱动效率。场效应管IRF540为通用型MOS管,作用是放大电流。瓷片电容C3和电解电容C4构成滤波电路,其主要作用是滤波。电阻R10的主要作用是限流以保护光耦,可根据光耦最大电流和输入电压计算R10大小。电感L1的作用
36、是储电。电感的大小及功率要与TEC相适应,一般为功率电感。二极管D3的作用是使场效应管不被电感L1断电后产生的反向电动势击穿。3.4 键盘输入设计本次设计使用了44矩阵式键盘,分别和单片机的I/O口P1.0-P1.7连接,此时的16个按键中S1-S10分别代表数字1234567890,S11表示小数点“.”,S12表示负号“-”,S13表示清除,S14表示设定温度时退一位,S15表示确定键,即确定设定温度值,并且当按下确定键,液晶显示中的时钟显示会自动清零,此举是为了方便查看温度从实际值到设定值所用的时间,S16表示启动键盘输入,即用户进入温度设定。矩阵式键盘与单片机接口连接电路图,如图3.6
37、所示。图3.6 矩阵式键盘与单片机接口连接电路图3.5 液晶显示输出设计3.5.1 字符型LCD1602概述+5V供电,内含重置电路,而且亮度可以通过调节电位器进行调节。这类模块的使用范围仅局限于字符而不包括图形,所以称其为字符型液晶显示模块6。由于本课题的液晶显示模块只需要显示温度和时间,即显示的内容只有字符而没有图形,并且LCD1602应用广泛,价格便宜。(1)LCD1602引脚说明图3.7为LCD1602的引脚图。图3.7 LCD1602引脚图其采用标准的16脚接口,其引脚功能说明如表3.2所示。表3.2 LCD1602引脚功能说明引脚号引脚名称引脚功能描述第1脚Vss电源地端第2脚Vd
38、d电源正端第3脚VoLCD驱动电源第4脚RS寄存器选择控制线,当RS=0时,并且作写入操作时,可以写入命令到指令寄存器;当RS=0时,并且作读取的动作时,可以读取忙碌标志及地址计数器的内容;如果RS=1时,则用于读写数据寄存器。第5脚R/WLCD读写控制线,当R/W=0时,LCD执行写入的动作,当R/W=1时,做读取的动作。第6脚E使能信号控制(enable)端。第7-14脚D0-D7数据输入输出引脚第15脚LEDA背光+5V第16脚LEDK背光地(2)LCD控制方式。单片机来控制LCD器件,由RS引脚来控制使用内部的指令寄存器和数据寄存器。LCD内部的忙碌标志BF(Busy Flag)表示L
39、CD内部是否正在工作,当RS=0时,DB7为0时,才允许写入命令或数据6。(3)LCD控制指令。液晶显示模块内部控制命令共有11条,LCD1602控制命令表如表3.3所示6。表3.3 LCD1602控制命令表序号指令功能控制引脚命令数据字RSR/WD7D6D5D4D3D2D1D01清显示00000000012光标返回000000001x3输入模式设置00000001I/DS4显示开/关控制0000001DCB5光标或字符移位000001S/CR/Lxx6功能设置00001DLNFxx7字符发生存储器地址设置0001字符发生存储器地址8显示数据存储器地址设置001显示数据存储器地址9读忙标志或地
40、址01BF计数器地址10写数据到CGRAM或DDRAM10要写的数据内容11从CGRAM或DDRAM读数据11读出的数据内容3.5.2 LCD1602与单片机的接口LCD1602与单片机的连接电路图,如图3.8所示。图3.8 LCD1602与单片机接口电路图因为单片机I/O接口充足,而且总线访问方式如今已很少使用,所以在本设计中,单片机与字符型LCD显示模块连接方式采用直接访问方式,数据传输方式为8位。直接访问方式下,LCD1602与单片机I/O口进行并行连接,LCD1602模块的8位数据线与单片机的P0.0-P0.7口相接,时序控制信号线P2.0、P2.1、P2.2接到RS、R/W、E端口。
41、调节电位器R14,可以调节液晶显示屏的亮度。3.6 实时时钟模块设计本课题实时时钟模块选用DS1302串行时钟芯片作为时钟运行的核心部件,由单片机控制时钟信息在液晶屏LCD1602上实时显示时间。实时时钟模块电路与单片机连接电路图如图3.9所示。图3.9 实时时钟模块电路与单片机连接电路图串行时钟芯片DS1302不仅价格低廉、而且性能稳定、与单片机I/O接口也简单,在电子类产品中被广泛使用。电压工作范围:2.0V-5.5V。引脚SCL、I/O、RST分别与单片机接口P2.3、P2.4、P2.5相连。DS1302主要特点是采用串行数据传输,5号脚VCC1接3V纽扣电池,当掉电时,能够保护电源并使
42、DS1302正常工作。DS1302可以对秒、分、时、日、月、星期、年进行计数,具有318位的额外数据暂存器。DS1302寄存器控制命令表如下表3.4所示。表3.4 DS1302寄存器控制命令表寄存器名称命令字各位内容取值范围读写D7D6D5D4D3D2D1D0秒寄存器80H81HCH10SECSEC00-59分寄存器82H83H010MINMIN00-59小时寄存器84H85H12/24010HRHR00-12,00-23日期寄存器86H87H0010DATEDATE01-28,29,30,31月份寄存器88H89H00010MONTHMONTH01-12周寄存器8AH8BH00000DAY0
43、1-07年份寄存器8CH8DH10YEARYEAR01-99控制寄存器8EH8FHWP00000003.7 语音播报模块设计SYN6288接收储存在单片机的温度文本数据,实现数据文本到语音(或TTS语音)的转换10。单片机读取到温度值后,通过串口RxD、TxD与语音合成模块进行通信,将温度值送到语音合成模块内,语音合成模块判断位R/B进行忙闲检测,如果空闲则进行语音合成,然后将得到的温度值进行语音转换。本系统中将SYN6288语音合成模块的UART_TxD引脚、UART_RxD引脚分别与STC15单片机的RxD、TxD引脚相连接。电源引脚与5V输出电源引脚相连,GND引脚共地,外接LED显示灯
44、,指示连接状态。语音播报模块电路图如图3.10所示。图3.10 语音播报电路图第四章 半导体制冷温控系统的软件设计4.1 系统主程序设计系统主程序流程图如图4.1所示。图4.1 系统主程序流程图系统上电后,首先进行初始化,包括对单片机I/O口进行设定及各个模块的初始化,PID控制算法初始化、温度检测初始化、液晶显示初始化、温度语音播报初始化等。各个功能模块,如温度检测模块、键盘温度设定模块、温度和时间液晶显示模块、温度语音播报模块以及PID控制算法等,都将在主程序中被调用,用来实现其各模块的相应功能。用户设定温度未进行按键确认前所显示温度为温度传感器DS18B20检测到的初始温度。当用户使用键盘输入进入温度设定模块并按下S15按键进行确认后,STC15单片机会比较DS18B20所检测到的实际温度及用户通过按键输入的设定温度