《湖北省黄冈中学自主招生考试数学试卷.doc》由会员分享,可在线阅读,更多相关《湖北省黄冈中学自主招生考试数学试卷.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除2011年湖北省黄冈中学自主招生考试数学试卷一、填空题(5×8=40分)1(5分)(2012乐平市校级自主招生)方程组的解是2(5分)(2011罗田县校级自主招生)若对任意实数x不等式axb都成立,那么a,b的取值范围为3(5分)(2013武汉校级自主招生)设1x2,则|x2|x|+|x+2|的最大值与最小值之差为4(5分)(2011罗田县校级自主招生)两个反比例函数y=,y=在第一象限内的图象如图所示点P1,P2,P3、P2007在反比例函数y=上,它们的横坐标分别为x1、x2、x3、x2007,纵坐标分别是1,3,5共2007个连续
2、奇数,过P1,P2,P3、P2007分别作y轴的平行线,与y=的图象交点依次为Q1(x1,y1)、Q1(x2,y2)、Q2(x2007,y2007),则|P2007Q2007|=5(5分)(2011罗田县校级自主招生)如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是6(5分)(2012金阊区校级自主招生)有一张矩形纸片ABCD,AD=9,AB=12,将纸片折叠使A、C两点重合,那么折痕长是7(5分)(2011罗田县校级自主招生)已知3,a,4,b,5这五个数据,其中a,b是方程x23x+2=0的两个根,则这五个数据的标准差是8(5分)(
3、2015黄冈中学自主招生)若抛物线y=2x2px+4p+1中不管p取何值时都通过定点,则定点坐标为二、选择题(5×8=40分)9(5分)(2015黄冈中学自主招生)如图,ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A3:2:1B5:3:1C25:12:5D51:24:1010(5分)(2012涪城区校级自主招生)若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是()ABCD11(5分)(2002济南)抛物线y=ax2与直线x=1,x=2,y=1,y=2围成
4、的正方形有公共点,则实数a的取值范围是()Aa1Ba2Ca1Da212(5分)(2015黄冈中学自主招生)有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A1.2元B1.05元C0.95元D0.9元13(5分)(2014余姚市校级自主招生)设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x11x2,那么实数a的取值范围是()ABCD14(5分)(2015黄冈中学自主招生)如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无
5、阴影两部分的面积之差是()AB1C1D115(5分)(2015黄冈中学自主招生)已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A1xBCD16(5分)(2012涪城区校级自主招生)某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了()A2x%B1+2x%C(1+x%)x%D(2+x%)x%三、解答题17(15分)(2015永春县自主招生)设m是不小于1的实数,关于x的方程x2+2(m2)x+m23m+3=0有两个不相等的实数根x1、x2,(1)若x12+x22=6,求m值;(2)求的最大值18(15
6、分)(2013茶陵县自主招生)如图,开口向下的抛物线y=ax28ax+12a与x轴交于A、B两点,抛物线上另有一点C在第一象限,且使OCAOBC,(1)求OC的长及的值;(2)设直线BC与y轴交于P点,点C是BP的中点时,求直线BP和抛物线的解析式19(15分)(2013茶陵县自主招生)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:家电名称空调彩电冰箱工 时产值(千元)432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高最高产值是多少?(以千元
7、为单位)20(10分)(2013茶陵县自主招生)一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率21(15分)(1999福州)如图,已知O和O相交于A、B两点,过点A作O的切线交O于点C,过点B作两圆的割线分别交O、O于E、F,EF与AC相交于点P(1)求证:PAPE=PCPF;(2)求证:;(3)当O与O为等圆时,且PC:CE:EP=3:4:5时,求PEC与FAP的面积的比值2011年湖北省黄冈中学自主招生考试数学试卷参考答案与试题解析一、填空题(5×8=40分)1(5分)(2012乐平市校级自主招生)方程组的解是和【解答】解:设
8、x+1=a,y1=b,则原方程可变为,由式又可变化为=26,把式代入得=13,这又可以变形为(+)23=13,再代入又得3=9,解得ab=27,又因为a+b=26,所以解这个方程组得或,于是(1),解得;(2),解得故答案为和2(5分)(2011罗田县校级自主招生)若对任意实数x不等式axb都成立,那么a,b的取值范围为a=0,b0【解答】解:如果a0,不论a大于还是小于0,对任意实数x不等式axb都成立是不可能的,a=0,则左边式子ax=0,b0一定成立,a,b的取值范围为a=0,b03(5分)(2013武汉校级自主招生)设1x2,则|x2|x|+|x+2|的最大值与最小值之差为1【解答】解
9、:1x2,x20,x+20,当2x0时,|x2|x|+|x+2|=2xx+x+2=4x;当1x0时,|x2|x|+|x+2|=2x+x+x+2=4+x,当x=0时,取得最大值为4,x=2时取得最小值,最小值为3,则最大值与最小值之差为1故答案为:14(5分)(2011罗田县校级自主招生)两个反比例函数y=,y=在第一象限内的图象如图所示点P1,P2,P3、P2007在反比例函数y=上,它们的横坐标分别为x1、x2、x3、x2007,纵坐标分别是1,3,5共2007个连续奇数,过P1,P2,P3、P2007分别作y轴的平行线,与y=的图象交点依次为Q1(x1,y1)、Q1(x2,y2)、Q2(x
10、2007,y2007),则|P2007Q2007|=【解答】解:由题意可知:P2007的坐标是(Px2007,4013),又P2007在y=上,Px2007=而Qx2007(即Px2007)在y=上,所以Qy2007=,|P2007Q2007|=|Py2007Qy2007|=|4013|=故答案为:5(5分)(2011罗田县校级自主招生)如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是3【解答】解:图中扇形的弧长是2,根据弧长公式得到2=n=120即扇形的圆心角是120弧所对的弦长是23sin60=36(5分)(2012金阊区校级自主招
11、生)有一张矩形纸片ABCD,AD=9,AB=12,将纸片折叠使A、C两点重合,那么折痕长是【解答】解:如图,由勾股定理易得AC=15,设AC的中点为E,折线FG与AB交于F,(折线垂直平分对角线AC),AE=7.5AEF=B=90,EAF是公共角,AEFABC,EF=折线长=2EF=故答案为7(5分)(2011罗田县校级自主招生)已知3,a,4,b,5这五个数据,其中a,b是方程x23x+2=0的两个根,则这五个数据的标准差是【解答】解:由方程x23x+2=0解方程的两个根是1,2,即a=1,b=2故这组数据是3,1,4,2,5其平均数(3+1+4+2+5)=3方差S2=(33)2+(13)2
12、+(43)2+(23)2+(53)2=2故五个数据的标准差是S=故本题答案为:8(5分)(2015黄冈中学自主招生)若抛物线y=2x2px+4p+1中不管p取何值时都通过定点,则定点坐标为(4,33)【解答】解:y=2x2px+4p+1可化为y=2x2p(x4)+1,分析可得:当x=4时,y=33;且与p的取值无关;故不管p取何值时都通过定点(4,33)二、选择题(5×8=40分)9(5分)(2015黄冈中学自主招生)如图,ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A3:2:1B
13、5:3:1C25:12:5D51:24:10【解答】解:连接EM,CE:CD=CM:CA=1:3EM平行于ADBHDBME,CEMCDAHD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3AH=(3)ME,AH:ME=12:5HG:GM=AH:EM=12:5设GM=5k,GH=12k,BH:HM=3:2=BH:17kBH=K,BH:HG:GM=k:12k:5k=51:24:10故选D10(5分)(2012涪城区校级自主招生)若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是()ABCD【解答】解:设直角三角形的两条直角边是a,b,则有:S=,又r=,a+b=
14、2r+c,将a+b=2r+c代入S=得:S=r=r(r+c)又内切圆的面积是r2,它们的比是故选B11(5分)(2002济南)抛物线y=ax2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是()Aa1Ba2Ca1Da2【解答】解:由右图知:A(1,2),B(2,1),再根据抛物线的性质,|a|越大开口越小,把A点代入y=ax2得a=2,把B点代入y=ax2得a=,则a的范围介于这两点之间,故a2故选D12(5分)(2015黄冈中学自主招生)有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共
15、需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A1.2元B1.05元C0.95元D0.9元【解答】解:设购一支铅笔,一本练习本,一支圆珠笔分别需要x,y,z元,根据题意得,得x+y+z=1.05(元)故选:B13(5分)(2014余姚市校级自主招生)设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x11x2,那么实数a的取值范围是()ABCD【解答】解:方程有两个不相等的实数根,则0,(a+2)24a9a=35a2+4a+40,解得a,x1+x2=,x1x2=9,又x11x2,x110,x210,那么(x11)(x21)0,x1x2(x1+x2)+10,
16、即9+10,解得a0,最后a的取值范围为:a0故选D14(5分)(2015黄冈中学自主招生)如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()AB1C1D1【解答】解:如图:正方形的面积=S1+S2+S3+S4;两个扇形的面积=2S3+S1+S2;,得:S3S4=S扇形S正方形=1=故选:A15(5分)(2015黄冈中学自主招生)已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A1xBCD【解答】解:因为3222=5,32+22=13,所以5x213,即故选B16(5分)(2012涪城区校级自主招生)某工厂第二季度的产值比第一季度的产值增长了
17、x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了()A2x%B1+2x%C(1+x%)x%D(2+x%)x%【解答】解:第三季度的产值比第一季度的增长了(1+x%)(1+x%)1=(2+x%)x%故选D三、解答题17(15分)(2015永春县自主招生)设m是不小于1的实数,关于x的方程x2+2(m2)x+m23m+3=0有两个不相等的实数根x1、x2,(1)若x12+x22=6,求m值;(2)求的最大值【解答】解:方程有两个不相等的实数根,=b24ac=4(m2)24(m23m+3)=4m+40,m1,结合题意知:1m1(1)x12+x22=(x1+x2
18、)22x1x2=4(m2)22(m23m+3)=2m210m+10=61m1,(2)=(1m1)当m=1时,式子取最大值为1018(15分)(2013茶陵县自主招生)如图,开口向下的抛物线y=ax28ax+12a与x轴交于A、B两点,抛物线上另有一点C在第一象限,且使OCAOBC,(1)求OC的长及的值;(2)设直线BC与y轴交于P点,点C是BP的中点时,求直线BP和抛物线的解析式【解答】解:(1)由题设知a0,且方程ax28ax+12a=0有两二根,两边同时除以a得,x28x+12=0原式可化为(x2)(x6)=0x1=2,x2=6于是OA=2,OB=6OCAOBCOC2=OAOB=12即O
19、C=2而=,故(2)因为C是BP的中点OC=BC从而C点的横坐标为3又设直线BP的解析式为y=kx+b,因其过点B(6,0),则有又点在抛物线上抛物线解析式为:19(15分)(2013茶陵县自主招生)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:家电名称空调彩电冰箱工 时产值(千元)432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高最高产值是多少?(以千元为单位)【解答】解:设每周应生产空调、彩电、冰箱的数量分别为x台、y台、z台,则有4得3
20、x+y=360,总产值A=4x+3y+2z=2(x+y+z)+(2x+y)=720+(3x+y)x=1080x,z60,x+y300,而3x+y=360,x+3603x300,x30,A1050,即x=30,y=270,z=60最高产值:304+2703+602=1050(千元)20(10分)(2013茶陵县自主招生)一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率【解答】解:画树状图得:则一共有8种等可能的情况,(1)2个女孩和1个男孩的3种,这个家庭有2个男孩和1个女孩的概率为:;(2)这个家庭至少有一个男孩的有7种情况,这个家庭至少有一
21、个男孩的概率为:21(15分)(1999福州)如图,已知O和O相交于A、B两点,过点A作O的切线交O于点C,过点B作两圆的割线分别交O、O于E、F,EF与AC相交于点P(1)求证:PAPE=PCPF;(2)求证:;(3)当O与O为等圆时,且PC:CE:EP=3:4:5时,求PEC与FAP的面积的比值【解答】(1)证明:连接AB,CA切O于A,CAB=FCAB=E,E=FAFCEPAPE=PCPF(2)证明:,再根据切割线定理,得PA2=PBPF,(3)解:连接AE,由(1)知PECPFA,而PC:CE:EP=3:4:5,PA:FA:PF=3:4:5设PC=3x,CE=4x,EP=5x,PA=3
22、y,FA=4y,PF=5y,EP2=PC2+CE2,PF2=PA2+FA2C=CAF=90AE为O的直径,AF为O的直径O与O等圆,AE=AF=4yAC2+CE2=AE2(3x+3y)2+(4x)2=(4y)2即25x2+18xy7y2=0,(25x7y)(x+y)=0,参与本试卷答题和审题的老师有:liume。;lanchong;zhjh;CJX;蓝月梦;mmll852;MMCH;ln_86;csiya;zhehe;wdxwwzy;zhangCF;yingzi;天马行空;心若在;lanyan;leikun;Liuzhx;开心;cook2360;ELSA;lf2-9;137-hui(排名不分先后)菁优网2016年4月26日【精品文档】第 10 页