《转速、电流双闭环直流调速系统.doc》由会员分享,可在线阅读,更多相关《转速、电流双闭环直流调速系统.doc(63页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date转速、电流双闭环直流调速系统第2章 转速、电流双闭环直流调速系统和调节器的工程设计方法第2章 转速、电流双闭环直流调速系统和调节器的工程设计方法2.1 转速、电流双闭环直流调速系统及其静特性采用PI调节的单个转速闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,单闭环系统就难以满足需要,这主要是因为在单闭环系统中不能控制电流
2、和转矩的动态过程。电流截止负反馈环节是专门用来控制电流的,并不能很理想地控制电流的动态波形,图2-1a)。在起动过程中,始终保持电流(转矩)为允许的最大值,使电力拖动系统以最大的加速度起动,到达稳态转速时,立即让电流降下来,使转矩马上与负载相平衡,从而转入稳态运行。这样的理想起动过程波形示于图2-1b。为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。应该在起动过程中只有电流负反馈,没有转速负反馈,达到稳态转速后,又希望只要转速负反馈,不再让电流负反馈发挥
3、作用。2.1.1 转速、电流双闭环直流调速系统的组成系统中设置两个调节器,分别调节转速和电流,如图2-2所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。+TGnASRACRU*n+-UnUiU*i+-UcTAM+-UdIdUPE-MTG图2-2 转速、电流双闭环直流调速系统结构 ASR转速调节器 ACR电流调节器 TG测速发电机TA电流互感器 UPE电力电子变换器内环外 环ni转速和电流两个调节器一般都采用PI调节器,图2-3。两个调节器的输出都是带
4、限幅作用的,转速调节器ASR的输出限幅电压决定了电流给定电压的最大值,电流调节器ACR的输出限幅电压限制了电力电子变换器的最大输出电压。图2-3 双闭环直流调速系统电路原理图 +-TG+-+-RP2U*nR0R0UcUiRiCi+-R0R0RnCnASRACRLMRP1UnU*iLM+MTAIdUdMTGUPE+-+-2.1.2 稳态结构图和静特性稳态结构图,如图2-4。当调节器饱和时,输出为恒值,相当于使该调节环开环。当调节器不饱和时,PI作用使输入偏差电压在稳态时总是零。在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。图2-4(a)
5、双闭环直流调速系统的稳态结构框图(ASR未饱和)a转速反馈系数 b 电流反馈系数 Ks a 1/CeU*nUcIdEnUd0Un+-ASR+U*i-IdR R b ACR-UiUPE1. 转速调节器不饱和稳态时,、,转速和电流反馈系数。,图2-5静特性的CA段。,CA段静特性从理想空载状态的一直延续到,而一般都是大于额定电流的。这就是静特性的运行段,它是水平的特性。2. 转速调节器饱和ASR输出达到限幅值,转速外环呈开环状态,成电流无静差的单电流闭环调节系统。稳态时, 为最大电流。静特性是图2-5中的AB段,它是垂直的特性。这样的下垂特性只适合于的情况,因为如果,则,ASR将退出饱和状态。双闭
6、环调速系统的静特性在负载电流小于时表现为转速无静差,转速负反馈起主要调节作用。当负载电流达到时,对应于转速调节器的饱和输出,这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。2.1.3 各变量的稳态工作点和稳态参数计算当两个调节器都不饱和时,、。转速n由给定电压决定的,ASR的输出量是由负载电流决定的,而控制电压的大小则同时取决于n和,或者说,同时取决于和。P调节器的输出量总是正比于其输入量,而PI调节器则不然,PI调节器未饱和时,其输出量的稳态值是输入的积分,最终使PI调节器输入为零,才停止积分。转速反馈系数,电流反馈系数。2.2 双闭环直流调速系统的数学模型和动态
7、性能分析2.2.1 双闭环直流调速系统的动态数学模型双闭环直流调速系统的动态结构图,如图2-6所示。图中和分别表示转速调节器和电流调节器的传递函数。图2-6 双闭环直流调速系统的动态结构框图 U*na Uc-IdLnUd0Un+-b -UiWASR(s)WACR(s)Ks Tss+11/RTl s+1RTmsU*iId1/Ce+E2.2.2 起动过程分析双闭环直流调速系统突加给定电压由静止状态起动时,转速和电流的动态过程示于图2-7。由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三种情况,整个动态过程就分成图中标明的I、II、III三个阶段。图2-7 双闭环直流调速系统起动时的转速
8、和电流波形 n OOttIdm IdL Id n* IIIIIIt4 t3 t2 t1 第I阶段()是电流上升阶段。突加给定电压后,、都上升,在没有达到负载电流以前,电机还不能转动。当后,电机开始起动,由于机电惯性的作用,转速不会很快增长,因而转速调节器ASR的输入偏差电压的数值仍较大,其输出电压保持限幅值,强迫电流迅速上升。直到,电流调节器很快就压制了的增长,标志着这一阶段的结束。在这一阶段中,ASR很快进入并保持饱和状态,而ACR不饱和。第II阶段()是恒流升速阶段,ASR饱和,转速环相当于开环,在恒值电流给定下的电流调节系统,基本上保持电流恒定,因而系统的加速度恒定,转速呈线性增长。与此
9、同时,电机的反电动势E也按线性增长,对电流调节系统来说,E是一个线性渐增的扰动量,为了克服它的扰动,和也必须基本上按线性增长,才能保持恒定。当ACR采用PI调节器时,要使其输出量按线性增长,其输入偏差电压必须维持一定的恒值,也就是说,应略低于。第阶段(以后)是转速调节阶段。当转速上升到给定值时,转速调节器ASR的输入偏差减小到零,输出维持在限幅值,电机仍在加速,使转速超调。转速超调后,ASR输入偏差电压变负,开始退出饱和状态,和很快下降。但是,只要仍大于负载电流,转速就继续上升。直到=时,转矩,则dn/dt=0,转速n才到达峰值(时)。此后,电动机开始在负载的阻力下减速,与此相应,在时间内,直
10、到稳定。如果调节器参数整定得不够好,也会有一段振荡过程。在这最后的转速调节阶段内,ASR和ACR都不饱和,ASR起主导的转速调节作用,而ACR则力图使尽快地跟随其给定值。双闭环直流调速系统的起动过程有以下三个特点:饱和非线性控制;转速超调;准时间最优控制。2.2.3 动态抗扰性能分析一般来说,双闭环调速系统具有比较满意的动态性能。对于调速系统,最重要的动态性能是抗扰性能。主要是抗负载扰动和抗电网电压扰动的性能。1、抗负载扰动负载扰动作用在电流环之后,因此只能靠转速调节器ASR来产生抗负载扰动的作用。a 1/CeU*nnUd0Un+-ASR1/R Tl s+1R TmsKsTss+1ACRb U
11、*iUi-EId图27 抗负载扰动2、抗电网电压扰动电网电压变化对调速系统也产生扰动作用,图2-8。双闭环系统中,由于增设了电流内环,电压波动可以通过电流反馈得到比较及时的调节。a 1/CeU*nnUd0Un+-ASR1/R Tl s+1R TmsIdKsTss+1ACRb U*iUi-E图28 抗电网电压波动2.2.4 转速和电流两个调节器的作用1. 转速调节器的作用(1) 转速调节器是调速系统的主导调节器,它使转速n很快地跟随给定电压变化,稳态时可减小转速误差,如果采用PI调节器,则可实现无静差。(2) 对负载变化起抗扰作用。(3) 其输出限幅值决定电机允许的最大电流。2. 电流调节器的作
12、用(1) 作为内环的调节器,在转速外环的调节过程中,它的作用是使电流紧紧跟随其给定电压(即外环调节器的输出量)变化。(2) 对电网电压的波动起及时抗扰的作用。(3) 在转速动态过程中,保证获得电机允许的最大电流,从而加快动态过程。(4) 当电机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。一旦故障消失,系统立即自动恢复正常。这个作用对系统的可靠运行来说是十分重要的。2.3 调节器的工程设计方法必要性: 设计调节器须同时解决稳、准、快、抗干扰等各方面相互有矛盾的静、动态性能要求。可能性: 电力拖动自动控制系统可由低阶系统近似,事先研究低阶典型系统的特性,将实际系统校正成典型系统,设
13、计过程就简便多了。建立调节器工程设计方法所遵循的原则是:(1)概念清楚、易懂;(2)计算公式简明、好记;(3)不仅给出参数计算的公式,而且指明参数调整的方向;(4)能考虑饱和非线性控制的情况,同样给出简单的计算公式;(5)适用于各种可以简化成典型系统的反馈控制系统。2.3.1 工程设计方法的基本思路调节器的设计过程分作两步:第一步,先选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度。第二步,再选择调节器的参数,以满足动态性能指标的要求。在选择调节器结构时,采用少量的典型系统,它的参数与系统性能指标的关系都已事先找到,就使设计方法规范化,大大减少了设计工作量。2.3.2 典型系统控制系统
14、的开环传递函数可表示分母中的项表示该系统在原点处有r重极点,根据,1,2,等不同数值,分别称作0型、I型、型、系统。0型系统稳态精度低,而型和型以上的系统很难稳定。因此,为了保证稳定性和较好的稳态精度,多用I型和II型系统。1、典型I型系统典型I型系统开环传递函数为,系统的惯性时间常数;系统的开环增益。闭环系统结构图示于图2-9a,图2-9b表示它的开环对数频率特性。 a)dB/decdB/decb)图29 典型I型系统典型I型系统结构简单,对数幅频特性的中频段以dB/dec的斜率穿越零分贝线,只要参数的选择能保证足够的中频带宽度,系统就一定是稳定的,且有足够的稳定裕量。当或时,相角稳定裕度。
15、2、典型型系统典型型系统开环传递函数为,闭环系统结构图和开环对数频率特性示于图2-10,中频段也是以dB/dec的斜率穿越零分贝线。O图210 典型型系统开环频率特性当或时,相角稳定裕度比大得越多,则系统的稳定裕度越大。2.3.3 控制系统的动态性能指标自动控制系统的动态性能指标包括对给定输入信号的跟随性能指标和对扰动输入信号的抗扰性能指标。一般来说,调速系统的动态指标以抗扰性能为主,而随动系统的动态指标则以跟随性能为主。1、跟随性能指标常用的阶跃响应跟随性能指标有上升时间、超调量和调节时间,图2-11。5%(或2%) 0 Otrts图211 动态响应2、抗扰性能指标 控制系统稳定运行中,突加
16、一个使输出量降低的扰动量以后,输出量由降低到恢复的过渡过程是系统典型的抗扰过程,如图2-12所示。常用的抗扰性能指标为动态降落和恢复时间。5%(或2%) O tmtvCb图212 典型的抗扰过程2.3.4 典型I型系统性能指标和参数的关系典型I型系统的开环传递函数包含两个参数:开环增益K和时间常数T。其中,时间常数T在实际系统中往往是控制对象本身固有的,能够由调节器改变的只有开环增益K,也就是说,K是唯一的待定参数。图2-13绘出了在不同K值时典型I型系统的开环对数频率特性,当时,特性以-20dB/dec斜率穿越零分贝线,系统有较好的稳定性。由图中的特性可知,所以(当时)。K越大,截止频率也越
17、大,系统响应越快,但相角稳定裕度越小,这也说明快速性与稳定性之间的矛盾。图213 不同K值时典型I型系统的开环对数频率特性1、典型I型系统跟随性能指标与参数的关系(1)稳态跟随性能指标不同输入信号作用下的稳态误差:在阶跃输入下的I型系统稳态时是无差的,但在斜坡输入下则有恒值稳态误差,且与K值成反比,在加速度输入下稳态误差为。表2-1 I型系统在不同的典型输入信号作用下的稳态误差 输入信号阶跃输入斜坡输入加速度输入稳态误差0(2)动态跟随性能指标典型I型系统是一种二阶系统,闭环传递函数的一般形式为,无阻尼时的自然振荡角频率,或称固有角频率;阻尼比,或称衰减系数。参数、与标准形式中的参数、之间的换
18、算关系如下,且。当时,欠阻尼的振荡特性,当时,过阻尼的单调特性;当时,是临界阻尼。由于过阻尼特性动态响应较慢,一般把系统设计成欠阻尼状态,即。典型I型系统中,得,因此在典型I型系统中应取。欠阻尼二阶系统在零初始条件下的阶跃响应动态指标:超调量:,上升时间:,峰值时间:。表2-2 典型I型系统动态跟随性能指标和频域指标与参数的关系参数关系0.250.390.500.691.0阻尼比1.00.80.7070.60.5超调量%0%1.5%4.3%9.5%16.3%上升时间6.64.73.32.4峰值时间8.36.24.73.6相角稳定裕度76.369.965.559.251.8截止频率0.243/0
19、.367/0.455/0.596/0.786/2 典型I型系统抗扰性能指标与参数的关系图2-14a是在扰动量F作用下的典型I型系统,其中,是扰动作用点前面部分的传递函数,后面部分是,于是。只讨论抗扰性能时,可令输入变量,这时输出变量可写成。将扰动作用前移到输入作用点上,即得图2-14b所示的等效结构图。典型I型系统 图214 在扰动作用下输出变化量的象函数为,若、,属典型I型系统。在阶跃扰动下,当,则,阶跃扰动后输出变化量的动态过程函数,式中控制对象中小时间常数与大时间常数的比值。输出量的最大动态降落用基准值的百分数表示,所对应的时间用时间常数T的倍数表示,允许误差带为5%时的恢复时间也用T的
20、倍数表示。为了使和的数值都落在合理范围内,将基准值取为。表2-3 典型I型系统动态抗扰性能指标与参数的关系(控制结构和扰动作用点如图2-15所示,已选定的参数关系KT=0.5)55.5%33.2%18.5%12.9%2.83.43.84.014.721.728.730.4由表2-3中的数据可以看出,当控制对象的两个时间常数相距较大时,动态降落减小,但恢复时间却拖得较长。2.3.5 典型II型系统性能指标和参数的关系典型II型系统的开环传递函数中时间常数也是控制对象固有的。所不同的是,待定的参数有两个:和。令, 是斜率为-20dB/dec的中频段的宽度(对数坐标),称作“中频宽”,图2-16典型
21、型系统的开环对数幅频特性和中频宽。采用“振荡指标法”中的闭环幅频特性峰值最小准则,可以找到和两个参数之间的一种最佳配合,、,确定了和之后,则,。1典型II型系统跟随性能指标和参数的关系(1)稳态跟随性能指标典型型系统在不同输入信号作用下的稳态误差表2-5 型系统在不同的典型输入信号作用下的稳态误差输入信号阶跃输入斜坡输入加速度输入稳态误差00在阶跃输入和斜坡输入下,型系统在稳态时都是无差的,在加速度输入下,稳态误差的大小与开环增益成反比。(2)动态跟随性能指标当取不同值时,对应的单位阶跃响应函数,从而计算出%、和振荡次数。采用数字仿真计算的结果列于表2-6中。表2-6 典型型系统阶跃输入跟随性
22、能指标(按准则确定参数关系)345678910%52.6%43.6%37.6%33.2%29.8%27.2%25.0%23.3%2.402.652.853.03.13.23.33.3512.1511.659.5510.4511.3012.2513.2514.20322111112、典型型系统抗扰性能指标和参数的关系典型型系统抗扰结构图2-17a,、,属典型型系统。在阶跃扰动下,取输出量基准值为。表2-7 典型型系统动态抗扰性能指标与参数的关系(控制结构和扰动作用点如图2-17所示,参数关系符合准则)34567891072.2%77.5%81.2%84.0%86.3%88.1%89.6%90.8
23、%2.452.702.853.003.153.253.303.4013.6010.458.8012.9516.8519.8022.8025.85一般来说,值越小,也越小,和都短,因而抗扰性能越好,但是,当时,由于振荡次数的增加,再小,恢复时间反而拖长了。由此可见,是较好的选择。典型I型系统和典型型系统除了在稳态误差上的区别以外,在动态性能中,一般来说,典型I型系统在跟随性能上可以做到超调小,但抗扰性能稍差,而典型型系统的超调量相对较大,抗扰性能却比较好。这是设计时选择典型系统的重要依据。2.3.6 调节器结构的选择和传递函数的近似处理非典型系统的典型化1、调节器结构的选择确定了要采用哪一种典型
24、系统之后,选择调节器的方法就是把控制对象与调节器的传递函数相乘,匹配成典型系统。表2-8 校正成典型I型系统的调节器选择和参数配合 控制 对象 调节器参数配合表2-9 校正成典型II型系统的调节器选择和参数配合控制 对象 调节器 参数 配合 认为: 认为:2、传递函数的近似处理(1)高频段小惯性环节的近似处理系统的开环传递函数为,和是小时间常数,近似为,近似的条件是。(2)高阶系统的降阶近似处理忽略特征方程的高次项。以三阶系统为例,其中都是正系数,且,即系统是稳定的。忽略高次项,可得近似的一阶系统的传递函数为,近似条件。(3)低频段大惯性环节的近似处理一个时间常数特别大的惯性环节时,可以近似地
25、将它看成是积分环节,近似条件。2.4 按工程设计方法设计双闭环系统的调节器用工程设计方法来设计转速、电流双闭环调速系统的两个调节器,先内环后外环。首先设计电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器。双闭环调速系统的动态结构图图2-22,不同之处在于增加了滤波环节,包括电流滤波、转速滤波和两个给定信号的滤波环节。-IdL(s)Ud0(s)Un+-+-UiACR1/RTl s+1RTmsU*I(s)Uc(s)Ks Tss+1Id1Ce+Eb Tois+11 T0is+1ASR1 T0ns+1a Tons+1U*n(s)n(s)电流环图2-22 双闭环调速系统的动态
26、结构框图 E(s)2.4.1 电流调节器的设计1、电流环结构图的化简转速的变化往往比电流变化慢得多,对电流环来说,反电动势是一个变化较慢的扰动,在电流的瞬变过程中,可以认为反电动势基本不变,即。把给定滤波和反馈滤波两个环节都等效地移到环内,同时把给定信号改成,则电流环便等效成单位负反馈系统(图2-23b)。和一般都比小得多,可以当作小惯性群而近似地看作是一个惯性环节,其时间常数为,则电流环结构图最终简化成图2-23c。2、电流调节器结构的选择电流环应以跟随性能为主,应选用典型I型系统,应采用PI型的电流调节器,其传递函数可以写成,电流调节器的比例系数;电流调节器的超前时间常数。3、电流调节器的
27、参数计算调节器零点与控制对象的大时间常数极点对消,选择,则电流环的动态结构图便成为图2-24a所示的典型形式,其中,图2-24b校正后电流环的开环对数幅频特性。希望电流超调量,可选=0.707,即。4、电流调节器的实现含给定滤波和反馈滤波的模拟式PI型电流调节器原理图示于图2-25。图中为电流给定电压,为电流负反馈电压,调节器的输出就是电力电子变换器的控制电压。可以导出、。2.4.2 转速调节器的设计1、电流环的等效闭环传递函数电流环经简化后可视作转速环中的一个环节,它的闭环传递函数忽略高次项,可降阶近似为,近似条件。电流环在转速环中应等效为。原来是双惯性环节的电流环控制对象,经闭环控制后,可
28、以近似地等效成只有较小时间常数的一阶惯性环节。这就表明,电流的闭环控制改造了控制对象,加快了电流的跟随作用,这是局部闭环(内环)控制的一个重要功能。2、转速调节器结构的选择转速控制系统的动态结构图如图2-26a所示,把转速给定滤波和反馈滤波环节移到环内,同时将给定信号改成,再把时间常数为和的两个小惯性环节合并起来,近似成一个时间常数为的惯性环节,转速环结构图可简化成图2-26b。为了实现转速无静差,在负载扰动作用点前面必须有一个积分环节,它应该包含在转速调节器ASR中,在扰动作用点后面已经有了一个积分环节,因此转速环开环传递函数应共有两个积分环节,所以应该设计成典型型系统。ASR也应该采用PI
29、调节器,转速调节器的比例系数;转速调节器的超前时间常数。调速系统的开环传递函数为开环增益,校正后的调速系统动态结构图示于图2-26c。3、转速调节器的参数计算按照典型型系统参数关系,、,因此,一般以选择。4、转速调节器的实现转速调节器参数与电阻、电容值的关系为、。2.4.3 转速调节器退饱和时转速超调量的计算突加给定电压后,转速调节器很快就进入饱和状态,当转速上升到给定值时,转速偏差电压变成负值,ASR退出饱和,因此在起动过程中转速必然超调。不是按线性系统规律的超调,而是经历了饱和非线性区域之后的超调,称作“退饱和超调”。退饱和超调量不等于典型II型系统跟随性能指标中的超调量。ASR饱和时,相
30、当于转速环开环,电流是恒值,延续到时为止,退饱和初始条件:。考虑实际转速与给定转速的差值,转速退饱和超调动态结构图2-29b,把的负反馈作用反映到主通道第一个环节的输出量上来,得图2-29c,为了保持各量间的加减关系不变,符号作相应的变化。典型II型系统,在、稳定运行,突然将负载由减小到,转速会产生一个动态速升与恢复的过程,这样的突卸负载速升过程也就是退饱和转速超调过程。在典型II型系统抗扰性能指标中,的基准值,退饱和转速超调的基准值或。转速超调量%,其基准值应该是,经基准值换算后得外环的响应比内环慢,这是按上述工程设计方法设计多环控制系统的特点。这样做,虽然不利于快速性,但每个控制环本身都是
31、稳定的,对系统的组成和调试工作非常有利。 设计举例:例题2-1、例题2-2和例题2-3。*2.6 弱磁控制的直流调速系统*2.6.1 变压与弱磁的配合控制当负载要求的调速范围更大时,采用变压和弱磁配合控制的办法,即在基速以下保持磁通为额定值不变,只调节电枢电压,而在基速以上则把电压保持为额定值,减弱磁通升速,这样的配合控制特性示于图2-35。*2.6.2 非独立控制励磁的调速系统图2-36是一种已在实践中证明很方便有效的控制系统,称作非独立控制励磁的调速系统。图中的给定电位器是模拟控制系统中常用的给定装置。电枢电压控制系统仍采用常规的转速、电流双闭环控制,而励磁控制系统也有两个控制环,即电动势外环和励磁电流内环,电动势调节器AER和励磁电流调节器AFR一般都采用PI调节器。在变压调速范围内,小于电动势给定信号,AER处于饱和状态,其输出限幅值使电动机励磁保持额定值不变,完全靠电枢电压的双闭环控制系统来控制转速。电枢电压最高升到其额定值为止,此时,电动势给定信号设置为相当于。当转速再升高时,使AER退出饱和状态,其输出量开始降低,通过AFR减弱励磁,系统便自动进入弱磁升速范围。在弱磁升速范围内,电动势E值保持不变,采用PI型的电动势调节器保证了电动势无静差的控制要求。电动势信号是由电动势运算器AE接受测量到的电枢电压信号和电流信号后运算得到的。-