《数学学科数学抽象核心素养的教学策略与实践专题研讨——优秀课例“函数单调性”点评分析(评课)ppt课件.pps》由会员分享,可在线阅读,更多相关《数学学科数学抽象核心素养的教学策略与实践专题研讨——优秀课例“函数单调性”点评分析(评课)ppt课件.pps(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 数学数学学科核心素养的教学策略与实践专题 “数学归纳法数学归纳法”点评分析点评分析李大永教师的教学生的学数学素养数学理解教育理解学习理解认知基础数学活动课堂氛围 数学素养的教学策略产生于对数学素养内涵的深刻理解;一、关于数学核心素养的教学策略一、关于数学核心素养的教学策略 数学核心素养是数学核心素养是具有具有数学基本特征数学基本特征的、的、适应个人终身适应个人终身发展和社会发展需要的发展和社会发展需要的人的人的关键能力关键能力与与思维品质思维品质。 数学核心素养数学核心素养不是不是指具体的知识与技能,也不是一般指具体的知识与技能,也不是一般意义上的数学能力。它是学生通过数学的学习、反思、意义
2、上的数学能力。它是学生通过数学的学习、反思、积累、孕育、升华,并获得发展的,是积累、孕育、升华,并获得发展的,是面对复杂的、面对复杂的、不确定的陌生情境和问题时不确定的陌生情境和问题时,能够,能够综合运用特定的数综合运用特定的数学观念、知识、技能、思维模式、探究技能学观念、知识、技能、思维模式、探究技能等,用积等,用积极的态度、科学的精神去分析问题、提出问题、解决极的态度、科学的精神去分析问题、提出问题、解决问题、交流结果的过程中表现出来的问题、交流结果的过程中表现出来的综合性品质综合性品质。数学核心素养的内涵数学核心素养的内涵数学抽象数学抽象是指舍去事物的一切物理属性,得到数学研究对象数学抽
3、象是指舍去事物的一切物理属性,得到数学研究对象的思维过程。主要包括:从数量与数量关系、图形与图形关的思维过程。主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系;从事物的具体背景系中抽象出数学概念及概念之间的关系;从事物的具体背景中中抽象出一般规律和结构抽象出一般规律和结构;用数学语言予以表征。;用数学语言予以表征。 主要表现在:主要表现在:形成数学概念和规则;形成数学概念和规则;形成数学命题和模型;形成数学命题和模型;形成数学方法与思想;形成数学方法与思想;形成数学结构与体系。形成数学结构与体系。逻辑推理逻辑推理是指从一些事实和命题出发,依据规则推出其他逻辑推理是指从
4、一些事实和命题出发,依据规则推出其他命题的思维过程。主要包括两类:一类是从特殊到一般的命题的思维过程。主要包括两类:一类是从特殊到一般的推理,推理形式主要有归纳、类比;一类是从一般到特殊推理,推理形式主要有归纳、类比;一类是从一般到特殊的推理,推理形式主要的推理,推理形式主要是是演绎。演绎。 主要表现在:主要表现在:发现和提出命题;发现和提出命题;掌握推理的基本形式和规则;掌握推理的基本形式和规则;探索和表述论证的过程探索和表述论证的过程;构建命题体系;构建命题体系;有逻辑地表达与交流。有逻辑地表达与交流。 数学素养的教学策略产生于对数学素养内涵的深刻理解; 数学思维活动是数学素养形成与发展的
5、核心过程性要素;一、关于数学核心素养的教学策略一、关于数学核心素养的教学策略数学思维活动的本质 数学素养的教学策略产生于对数学素养内涵的深刻理解; 数学思维活动是数学素养形成与发展的核心过程性要素; 学习主体在数学思维活动中的经历、体验、反思中产生的情感共鸣是数学素养形成与发展的催化剂;一、关于数学核心素养的教学策略一、关于数学核心素养的教学策略 人类的是先验的,是人的基因和大脑这一物质基础决定的先天具有的。所以每一个孩子每一个孩子都存在着本质直观的潜能。都存在着本质直观的潜能。 但是,先天的存在和后天的经验有机结合才能形先天的存在和后天的经验有机结合才能形成人的强大的成人的强大的直观能力直观
6、能力。 史宁中指出:“保持并放大保持并放大孩子学习和创造的天孩子学习和创造的天性性”应作为教育的基本原则二、如何理解数学学习和教学?二、如何理解数学学习和教学?直观不是一成不变的,而是随着经验的积累其功能可以逐渐加强的。数学知识的形成依赖于直观,数学知识的确立依赖于推理。二、如何理解数学学习和教学?二、如何理解数学学习和教学?三、如何理解该数学教学内容?三、如何理解该数学教学内容? 单调性是函数的重要性质,它是函数性质中的核心概念。对这一概念内涵的理解是一个长期的过程,贯穿在从初中到高中乃至大学的数学课程之中; 函数性质反映了函数关系中的两个变量各自变化规律之间的联系表现出的特性; 高中函数单
7、调性的概念具有丰富的数学思维价值。这一概念的形成、发展、明晰化过程就是一个从感性到理性、从具体直观到一般抽象的认知过程,概念的形成发展体现出数学抽象和逻辑推理的数学思维特征。因此,这一概念的学习活动是落实发展学生数学抽象素养和逻辑推理素养的好机会。从整体角度理解函数单调性概念函数单调性函数单调性函数概念函数概念导导 数数初中数学:内容与表达式初中数学:内容与表达式全称量词全称量词极值极值最值最值值域值域初等函数:初等函数:指、对、幂、指、对、幂、三角函数等三角函数等不等式不等式函数单调性在数学整体中的重要地位函数单调性在数学整体中的重要地位函数变化趋势(单调性)x 增大y 随之增大12xx (
8、)()12f xf x 任取,12xx化静为动来自于图来自于图象的直观象的直观感知感知过程过程( (操作意义)操作意义)对象(结构意义)对象(结构意义)对应对应函数性质的本质:四、这节课带给我们哪些启示和思考?四、这节课带给我们哪些启示和思考?本节课的特征:教师一直致力于教学生学会数本节课的特征:教师一直致力于教学生学会数学抽象与推理,始终把培养学生数学抽象和逻学抽象与推理,始终把培养学生数学抽象和逻辑推理的素养作为自己教学行为的指南。辑推理的素养作为自己教学行为的指南。65.554.543.532.521.510.5-0.5-1-3-2-11234561.210.80.60.40.2-0.2
9、-0.4-0.6-0.8-1-1.2-1.4-0.50.511.522.53问题问题1 1:观察第一组图像,寻找共同特征和不同之处观察第一组图像,寻找共同特征和不同之处回忆你在初中所学的函数,举例子说明哪一个函数图象回忆你在初中所学的函数,举例子说明哪一个函数图象与这组图象具备共同特征与这组图象具备共同特征问题问题2 2:回顾初中知识,是如何描述函数的变化趋势的?:回顾初中知识,是如何描述函数的变化趋势的?借助图像回顾一次函数借助图像回顾一次函数y y随随x x的增大而增大的增大而增大图形语言图形语言自然语言自然语言问题问题3 3:这种形象的描述来源于对函数图象的观察,可否用量化的方法刻画:这
10、种形象的描述来源于对函数图象的观察,可否用量化的方法刻画变化趋势?变化趋势?问题问题3 3:这种形象的描述来源于对函数图象的观察,可否用量化的方法刻画:这种形象的描述来源于对函数图象的观察,可否用量化的方法刻画变化趋势?变化趋势?思考题思考题问题问题3 3:这种形象的描述来源于对函数图象的观察,可否用量化的方法刻画:这种形象的描述来源于对函数图象的观察,可否用量化的方法刻画变化趋势?变化趋势?如何让学生感受到用量化方法刻画如何让学生感受到用量化方法刻画函数变化趋势的价值性知识?即数函数变化趋势的价值性知识?即数学抽象对于数学的价值与功能?学抽象对于数学的价值与功能?思考题思考题问题问题3 3:这种形象的描述来源于对函数图象的观察,可否用量化的方法刻画:这种形象的描述来源于对函数图象的观察,可否用量化的方法刻画变化趋势?变化趋势?如何让学生感受到用量化方法刻画如何让学生感受到用量化方法刻画函数变化趋势的价值性知识?即数函数变化趋势的价值性知识?即数学抽象对于数学的价值与功能?学抽象对于数学的价值与功能?1( )( )(1,)f xxxf x能通过做出函数的图象来证明函数在上单调递增吗?改进:改进:y=f(x)y=g(x)促进概念的精细化促进概念的精细化谢 谢