《用simulink对三相桥式全控整流电路仿真和谐波分析...doc》由会员分享,可在线阅读,更多相关《用simulink对三相桥式全控整流电路仿真和谐波分析...doc(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date用simulink对三相桥式全控整流电路仿真和谐波分析.用simulink对三相桥式全控整流电路仿真和谐波分析. 新能源与动力工程学院用simulink对三相桥式全控整流电路仿真和谐波分析 专业电力工程与管理 班级电力工程与管理1101 姓名李宁军 学号201110844 指导教师董海燕2014年 11 月2日-用simulink对三相桥式全控整流电路仿真和谐波分析摘
2、要:随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路,由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。Matlab提供的可视化仿真工具可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、负载情况下进行了仿真分析,既进一步了解三相桥
3、式全控整流电路的工作原理,同时进行了FFT谐波分析,这对于评估电力电子装置对电网的危害和影响有非常重要的作用。对三相桥式全控整流电路交流侧产生的谐波进行仿真分析,从而证明了仿真研究的有效性在在现代电力电子技术中具有很重要的作用和很广泛的应用。1. 工作特点和电路的构成:三相桥式全控整流电路原理图如图1所示。它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。其工作特点是任何时刻都有不同组别的两只晶闸管同时导通,构成电流通路,因此为保证电路启动或电流断续后能正常导通,必须对不同组别应到导通的一对晶闸管同时加触发脉冲,所以触发脉冲的宽度应大于3
4、的宽脉冲。宽脉冲触发要求触发功率大,易使脉冲变压器饱和,所以可以采用脉冲列代替双窄脉冲;每隔3换相一次,换相过程在共阴极组和共阳极组轮流进行,但只在同一组别中换相。接线图中晶闸管的编号方法使每个周期内6个管子的组合导通顺序是VT1-VT2-VT3-VT4-VT5-VT6,同一相的上下两个桥臂,即VT1和VT4,VT3和VT6,VT5和VT2的脉冲相差,给分析带来了方便;当=O时,输出电压Ud一周期内的波形是6个线电压的包络线。所以输出脉动直流电压频率是电源频率的6倍,比三相半波电路高1倍,脉动减小,而且每次脉动的波形都一样,故该电路又可称为6脉动整流电路。 图12.建模:根据三相桥式全控整流电
5、路的原理可以利用simulink内的模块建立仿真接线如图2所示,设置三个交流电压源Va,Vb,Vc相位角依次相差120,得到整流桥的三相电源。图2参数设置:三相电源电压设置为380V,频率设为50Hz,相角相互相差120度。变换器桥设置相当于六个晶闸管,只要有适当的触发信号,便可以使变换器在对应的时刻导通。设置同步电压的频率跟脉冲宽度分别为50Hz和10%,“alpha_deg”是移相控制角信号输入端,通过设置输入信号给它的常数模块参数便可以得到不同的触发角a,从而产生给出间隔60 度的双脉冲。选择算法为ode23tb,stop time 设为0.06。1.电阻负载仿真 设置电路负载为纯电阻性
6、,R100。以下是分别在度,30 度,60 度,90度,120度时的仿真结果(见图3-图32)。2.阻感负载仿真 设置电路负载为阻感性,R100,L1e-3。以下是分别在a=0 度,30 度,60 度,75度,90度是仿真结果(见图33-图54)仿真结果和Powergui FFT Analysis显示:1.电阻R100,触发角a=30度图3图4、三相电压FFT分析图5、三相电流FFT分析图6、触发脉冲FFT分析图7、负载电压FFT分析图8、负载电流FFT分析2.电阻R=100,触发角a=30度图9图10、三相电压FFT分析图11、三相电流FFT分析图12、触发脉冲FFT分析图13、负载电压FF
7、T分析图14、负载电流FFT分析3、电阻R=100、触发角a=60度图15 图16、三相电压FFT分析图17、三相电流FFT分析图18、触发脉冲FFT分析图19、负载电压FFT分析图20、负载电流FFT分析4、电阻R=100,触发角a=120度图21图22三相电压FFT分析图23三相电流FFT分析图24触发脉冲FFT分析图25负载电压FFT分析图26负载电流FFT分析5、阻感负载R=100,L1e-3,触发角a=0度图27图28三相电压FFT分析图29三相电流FFT分析图30触发脉冲FFT分析图31负载电压FFT分析图32负载电流FFT分析6阻感负载R=100,L1e-3,触发角a=30度图3
8、3图34三相电压FFT分析图35三相电流FFT分析图36触发脉冲FFT分析图37负载电压FFT分析图38负载电流FFT分析7阻感负载R=100,L1e-3,触发角a=60图39图40三相电压FFT分析图41三相电流FFT分析图42触发脉冲FFT分析图43负载电压FFT分析图44负载电流FFT分析8阻感负载R=100,L1e-3,触发角a=75图45图46三相电压FFT分析图47三相电流FFT分析图48触发脉冲FFT分析图49负载电流FFT分析9感负载R=100,L1e-3,触发角a=90图50 图51三相电压FFT分析图52触发脉冲FFT分析图53负载电压FFT分析图54负载电流FFT分析3、
9、Powergui FFT Analysis结果1、当电阻负载R=100,触发角a=30度时对交流侧电流的谐波分析可以通过“Powergui”模块实现。 首先在 “Scope” 模块中,将“Save data to workspace”选项勾掉; 设置变量名为“liningjun1”。然后,打开“FFT Analysis”工具选项,选择输入变量“input1 ”(三相电压) ;设置起始时间为 0.0s;快速傅立叶分析的周期数为1;基波频率为 50Hz;最大频率为 1000Hz;显示类型设置为“Bar (relative to fundamental)”。最终得到的 FFT 分析窗口下图所示。基波
10、电流幅值为666.2A,总谐波电流畸变率为0.47%。选择输入变量“input2”(三相电流)设置起始时间为 0.0s;快速傅立叶分析的周期数为1;基波频率为 50Hz;最大频率为 1000Hz;显示类型设置为“Bar (relative to fundamental)”。最终得到的 FFT 分析窗口下图所示。可见,三相桥式全控整流电路交流侧电流含有的谐波次数为 6K1 (K=1, 2,3,) ,基波电压幅值为6.408V,总谐波电流畸变率为31.15%。选择输入变量“input3”(触发脉冲)设置起始时间为 0.0s;快速傅立叶分析的周期数为1;基波频率为 50Hz;最大频率为 1000Hz
11、;显示类型设置为“Bar (relative to fundamental)”。最终得到的 FFT 分析窗口下图所示。基波幅值为0.09655,总谐波电流畸变率为317.09%。选择输入变量“input4”(负载电压)设置起始时间为 0.0s;快速傅立叶分析的周期数为1;基波频率为 50Hz;最大频率为 1000Hz;显示类型设置为“Bar (relative to fundamental)”。最终得到的 FFT 分析窗口下图所示。可见,三相桥式全控整流电路负载侧电流含有的谐波次数为 6K(K=1, 2,3,) ,基波电压幅值为4.721V,总谐波电流畸变率为3205.05%。选择输入变量“i
12、nput5”(负载电流)设置起始时间为 0.0s;快速傅立叶分析的周期数为1;基波频率为 50Hz;最大频率为 1000Hz;显示类型设置为“Bar (relative to fundamental)”。最终得到的 FFT 分析窗口下图所示。可见,三相桥式全控整流电路负载侧电流含有的谐波次数为 6K(K=1, 2,3,) ,基波电压幅值为0.04721V,总谐波电流畸变率为3205.05%。2、当阻感负载R=100, L1e-3,触发角a=60度时对交流侧电流的谐波分析可以通过“Powergui”模块实现。 首先在 “Scope” 模块中,将“Save data to workspace”选项
13、勾掉; 设置变量名为“liningjun1”。然后,打开“FFT Analysis”工具选项,选择输入变量“input1 ”(三相电压) ;设置起始时间为 0.0s;快速傅立叶分析的周期数为1;基波频率为 50Hz;最大频率为 1000Hz;显示类型设置为“Bar (relative to fundamental)”。最终得到的 FFT 分析窗口下图所示。基波电流幅值为668.2A,总谐波电流畸变率为0.0%。选择输入变量“input2”(三相电流)设置起始时间为 0.0s;快速傅立叶分析的周期数为1;基波频率为 50Hz;最大频率为 1000Hz;显示类型设置为“Bar (relative
14、to fundamental)”。最终得到的 FFT 分析窗口下图所示。可见,三相桥式全控整流电路交流侧电流含有的谐波次数为 6K1 (K=1, 2,3,) ,基波电压幅值为3.349V,总谐波电流畸变率为67.08%。选择输入变量“input3”(触发脉冲)设置起始时间为 0.0s;快速傅立叶分析的周期数为1;基波频率为 50Hz;最大频率为 1000Hz;显示类型设置为“Bar (relative to fundamental)”。最终得到的 FFT 分析窗口下图所示。基波幅值为0.07734,总谐波电流畸变率为404.16%。选择输入变量“input4”(负载电压)设置起始时间为 0.0
15、s;快速傅立叶分析的周期数为1;基波频率为 50Hz;最大频率为 1000Hz;显示类型设置为“Bar (relative to fundamental)”。最终得到的 FFT 分析窗口下图所示。可见,三相桥式全控整流电路负载侧电流含有的谐波次数为 6K(K=1, 2,3,) ,基波电压幅值为74.86V,总谐波电流畸变率为326.85%。选择输入变量“input5”(负载电流)设置起始时间为 0.0s;快速傅立叶分析的周期数为1;基波频率为 50Hz;最大频率为 1000Hz;显示类型设置为“Bar (relative to fundamental)”。最终得到的 FFT 分析窗口下图所示。
16、可见,三相桥式全控整流电路负载侧电流含有的谐波次数为 6K(K=1, 2,3,) ,基波电压幅值为0.7478V,总谐波电流畸变率为324.72%。4、结语 通过仿真和分析,可知三相桥式全控整流电路的输出电压受控制角a和负载特性的影响,文中应用Matlab的可视化仿真工具simulink对三相桥式全控整流电路的仿真结果进行了详细分析,并进行FFT谐波分析仿真。可以直观地观测到电力电子电路的各种暂态和稳态过程、更深刻地认识电力电子变流电路引起的谐波问题。该建模和仿真方法可以为其它电力电子变流电路谐波分析提供范例和参考,为下一步的谐波抑制研究提供基础。采用MatablSimulink对三相桥式全控整流电路进行仿真分析,避免了常规分析方法中繁琐的绘图和计算过程,得到了一种直观、快捷分析整流电路的新方法。应用MatlabSimulink进行仿真,在仿真过程中可以灵活改变仿真参数,并且能直观地观察到仿真结果随参数的变化情况。Matlab是一种值得进一步应用推广的功能强大的仿真软件,同进也是电力电子技术实验较好辅助工具。