数学史与数学教育-答案.docx

上传人:豆**** 文档编号:28476443 上传时间:2022-07-28 格式:DOCX 页数:22 大小:27.10KB
返回 下载 相关 举报
数学史与数学教育-答案.docx_第1页
第1页 / 共22页
数学史与数学教育-答案.docx_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《数学史与数学教育-答案.docx》由会员分享,可在线阅读,更多相关《数学史与数学教育-答案.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精品文档,仅供学习与交流,如有侵权请联系网站删除数学史与数学教育 绪言(一)1【单选题】(A)于1758年出版的著作数学史是世界上第一部数学史经典著作。A、蒙蒂克拉B、阿尔弗斯C、爱尔特希D、傅立叶2【单选题】首次使用幂的人是(C)。A、欧拉B、费马C、笛卡尔D、莱布尼兹3【单选题】康托于(B)年起开始出版的数学史讲义标志着数学史成了一门独立的学科。A、1870B、1880C、1890D、19004【判断题】历史上最早的数学史专业刊物是1755年起开始出版的数学历史、传记与文献通报。X5【判断题】公元前5世纪的希腊选集中记载了关于丢番图年龄的诗文。(X)数学史与数学教育 绪言(二)1【单选题】

2、卡约黎的著作数学的历史出版于(B)年。A、1890B、1894C、1898D、19022【单选题】史密斯的著作初等数学的教学出版于(A)。A、1900B、1906C、1911D、19133【单选题】(D)数学史教授卡约黎倡导为教育而研究数学史。A、德国B、法国C、英国D、美国4【判断题】四等分角以及倍立方问题同属于三大几何难题,是被证明无法用尺规做出的。(X)5【判断题】史密斯倡导建立了ICMI。(V)数学史与数学教育 绪言(三)1【单选题】Haeckel的生物发生定律应用于数学史中即为(C)。A、基础重复原理B、往复创新原理C、历史发生原理D、重构升华原理2【单选题】史密斯的数学史课程最早开

3、设于(C)年。A、1889B、1890C、1891D、18923【单选题】如何解题、数学发现的作者是(C)。A、庞加莱B、弗赖登塔尔C、波利亚D、克莱因4【判断题】M.克莱因认为学生学习中遇到的困难也是数学家历史上遇到的困难,数学史可以作为数学教育的指南。(V)5【判断题】18世纪欧洲主流学术观点不承认负数为数。(V)数学史与数学教育 绪言(四)1【单选题】HPM的研究内容不包括(D)。A、数学教育取向的数学史研究B、基于数学史的教学设计C、历史相似性研究D、数学史融入数学科研的行动研究2【单选题】HPM的主要目标是促进三方面的国际交流与合作,其中不包括。DA、大中学校数学史课程B、数学史在数

4、学教学上的运用C、各层次数学史与数学教育关系的观点D、数学史对数学发展的推动作用3【单选题】(A)最早计算出了地球与太阳间距离和地球和月亮间距离之比。A、AristarchusB、PlatoC、Nikolaj KopernikD、Archimedes4【判断题】为了讲解锐角三角函数中三角比的变化情况,采用日晷的例子比梯子靠墙下滑的例子更为科学的原因是日晷的例子中一条直角边长度不变。(V)5【判断题】古巴理论时期的数学泥板M7857记录了等差数列求和问题。(X)数学史与数学教育 绪言(五)1【单选题】由驴桥定理可判断的是(C)。A、等边三角形三个角相等B、等边三角形角度与边长的关系C、等腰三角形

5、两底角相等D、等腰三角形底角与腰长的关系2【单选题】将圆周分为360等份,每份对应为1度,是源于(C)。A、古埃及B、古希腊C、两河流域D、古印度3【单选题】之所以将平面直角坐标系中平面所分成的四个部分叫象限,来源于清朝天文学家梅文鼎将(D)分为四等分,每个四分之一圆称为象限。A、正方形B、长方形C、三角形D、圆形4【判断题】托勒密的天文大成中提出了度分秒的概念。(V)5【判断题】数学归纳法的名称来源于19世纪德国人的著作。(X)数学史与数学教育 绪言(六)1【单选题】阿那克萨戈拉斯认为,人生的意义在于研究(B)。A、日、月、星B、日、月、天C、人、理、星D、人、理、天2【单选题】萨顿被认为是

6、(A)之父。A、科学史B、数学史C、代数史D、几何史3【单选题】祖暅利用截面原理推导出了(C)的体积。A、正方体B、长方体C、球体D、椎体4【判断题】John Dee在其毕业论文中对亚里士多德的大量理论做出了批判。(X)5【判断题】法国数学家韦达的正式工作其实是一名医师。(X)数学史与数学教育 绪言(七)1【单选题】利玛窦和徐光启根据(C)的几何原本翻译了其前六卷的内容。A、希腊语版B、阿拉伯语版C、拉丁文版D、英文版2【单选题】(C)数学家索菲热尔曼对费马大定理做出了一个一般性结论。A、德国B、英国C、法国D、俄国3【单选题】利玛窦向徐光启所说的西方学校中必学的教材是(A)。A、几何原本B、

7、测量法义C、勾股义D、定法平方算数4【判断题】法国数学家华里司的作品微积溯源成为中国第二本微积分教材。(X)5【判断题】索菲热尔曼在巴黎大学跟随高斯学习,激发了其对数学的兴趣。(X)数学史与数学教育 绪言(八)1【单选题】林肯于1860年选举总统之前几乎精通了几何原本的前(C)卷)。A、4B、5C、6D、72【单选题】毕达哥拉斯定理在几何原本中第一卷的第(C)条命题。A、27B、37C、47D、573【单选题】托马斯霍布斯于(C)岁开始学习数学A、20B、30C、40D、504【判断题】法布尔在其小说昆虫记中提到了大量关于其学习数学的经历。(X)5【判断题】托马斯霍布斯的利维坦在形式上受到了几

8、何原本的较大影响。(V)数学史与数学教育 绪言(九)1【单选题】根据第斯多惠的观点,错误的教学原则是(D)。A、由近及远B、由简到繁C、由易到难D、由未知到已知2【单选题】西塞罗认为,“假如我们把(D)看作我们的向导,她是决不会把我们领入歧途的”。A、科学B、理性C、数学D、自然3【单选题】在教育学中,(D)提出“自然不强迫任何事物去进行非它自己的成熟了的力量所驱使的事”。A、卢梭B、赫尔巴特C、杜威D、夸美纽斯4【判断题】阿波罗尼斯在其著作圆锥曲线中证明了交半径之和为常数。(V)5【判断题】解析几何的发明者是笛卡尔。(V)数学史、数学情感与数学观(一)1【单选题】(B)认为唯有有教养的人才能

9、领会兴趣。A、克莱因B、第斯多惠C、夸美纽斯D、裴斯泰洛齐2【单选题】(C)认为兴趣是创造一个欢乐和文明的教育环境的主要途径之一。A、克莱因B、第斯多惠C、夸美纽斯D、裴斯泰洛齐3【单选题】(B)认为教师要以学习兴趣为教学的前提。A、克莱因B、第斯多惠C、夸美纽斯D、裴斯泰洛齐4【判断题】Marcus Ordeyne的道德一书中主要表现了数学教育与兴趣之间的联系。(X)5【判断题】两河流域先于中国人发现了勾股定理。(V)数学史、数学情感与数学观(二)1【单选题】祖冲之第一个计算出的圆周率为(C)。A、七分之二十二B、二十二分之七C、一百一十三分之三百五十五D、三百五十五分之一百一十三2【单选题

10、】(C)人最早使用了负数。A、印度B、阿拉伯C、中国D、古希腊3【单选题】第一个运用角边角定理进行远距离测量的是(A)。A、泰勒斯B、柏拉图C、亚里士多德D、欧几里得4【判断题】运用角边角定理进行远距离测距的主要原因是需要测量的距离出现时间较短,来不及直接测量。(X)5【判断题】阿基米德发现圆的直径等分圆。(X)数学史、数学情感与数学观(三)1【单选题】斐波那契于(B)年出版了计算之书。A、1200B、1202C、1204D、12062【单选题】阿基米德假设每一粒沙与罂粟壳大小相当,推算出整个宇宙中的沙粒数量10的(D)次幂。A、38B、47C、52D、633【单选题】首先发明幂指数的人是(C

11、)。A、阿基米德B、泰勒斯C、笛卡尔D、牛顿4【判断题】古罗马哲学家西塞罗于公元75年寻找到了阿基米德的坟墓。(X)5【判断题】阿基米德首次计算出来球和外切圆柱体的体积之比为3:2。(X)数学史、数学情感与数学观(四)1【单选题】蒲柏在人论提到蜘蛛与(C)一样可以稳稳当当地画平行线。A、牛顿B、笛卡尔C、棣莫佛D、欧拉2【单选题】为了解决天文运算问题,从伦敦前往爱丁堡与纳皮尔会面的数学家是(D)。A、麦克劳林B、利尔特伍德C、惠特克D、布里格斯3【单选题】(C)说过对数的发明让天文学家的寿命增加了一倍。A、拉格朗日B、阿利斯塔克C、拉普拉斯D、罗蒙诺索夫4【判断题】古埃及的分数起源之一与神话人

12、物荷鲁斯的眼睛有关。(V)5【判断题】讲数学史不仅可以激发学生的兴趣,也可以促进学生对数学的理解。(V)数学史、数学情感与数学观(五)1【单选题】(A)通过引用杰罗姆的懒人懒办法的情节衬托出了字母表示数的优越性。A、克莱因B、第斯多惠C、夸美纽斯D、裴斯泰洛齐2【单选题】佛教中1微尘是(D)极微尘。A、1B、3C、5D、73【单选题】下列换算中,不符合佛本行集经卷12中提到的“几许微尘成一由旬”的内容的是(A)。A、七指节成一尺B、七兔尘成一羊尘C、七牛尘成一虮D、七芥子成一大麦4【判断题】Henry Perigal以水车翼轮法证明了勾股定理。(V)5【判断题】欧拉与狄德罗关于上帝是否存在的论

13、证中,狄德罗成功证明了上帝的存在。(X)数学史、数学情感与数学观(六)1【单选题】根据大多数学者的观点,解析几何历史发展分为(A)个阶段。A、三B、四C、五D、六2【单选题】解析几何两条坐标轴的最早来源于(C)。A、阿基米德B、丢番图C、阿波罗尼斯D、欧几里得3【单选题】基于横、纵坐标的曲线作图来源于(D)。A、莱布尼茨B、惠更斯C、笛卡尔D、奥雷姆4【判断题】费马对解析几何的贡献在于,首先根据动点所满足的条件,求关于动点横、纵坐标的方程。(X)5【判断题】洛必达的作品无穷小分析分析了0/0不定型的解法。(V)数学史、数学情感与数学观(七)1【单选题】(C)发现无穷多个数加起来可能是一个有限的

14、数。A、丹尼尔伯努利B、奥古斯丁路易柯西C、雅各布伯努利D、路易吉圭多格兰第2【单选题】玫瑰线最早的研究者是(D)。A、丹尼尔伯努利B、克里斯蒂安惠更斯C、雅各布伯努利D、路易吉圭多格兰第3【单选题】(B)首先给出了微积分无穷级数收敛性的判别法。A、丹尼尔伯努利B、奥古斯丁路易柯西C、雅各布伯努利D、路易吉圭多格兰第4【判断题】0/0不定型问题最早的解决者是伯努利。(V)5【判断题】亚里士多德不接受潜无穷和实无穷。(X)数学史、数学情感与数学观(八)1【单选题】(C)在大教学论中提出,教育实践中存在偏差。A、克莱因B、第斯多惠C、夸美纽斯D、裴斯泰洛齐2【单选题】勃利亚在数学的发现中提出,数学

15、教学的三原理不包括(D)。A、主动学习B、最佳动机C、阶段序进D、整体测评3【单选题】爱德华桑戴克的教育之根本原理中提出,从根本看来,一切学习和教学都在(C)。A、传授知识B、训练思维C、激起动机D、建立逻辑4【判断题】为了纠正教育实践中存在的偏差,应该用一切可能的方式让孩子记住计划中的知识。(X)5【判断题】古巴比伦时期就已经有人运用了平方差公式。(V)数学史、数学情感与数学观(九)1【单选题】下列成就中不属于埃拉托色尼的是(C)。A、发现素数的筛选法B、编著了科学史C、亚历山大图书馆首任馆长D、制作当时最完整的世界地图2【单选题】一元二次方程的认知基础是(B)。A、x加y等于aB、x的平方

16、的等于aC、x乘y等于aD、x的倍数为a3【单选题】埃拉托色尼通过阿斯旺水井测量了(D)。A、太阳到地球的距离B、阿斯旺的纬度C、太阳的大小D、地球的半径4【判断题】创造学生的学习动机时,不能仅仅选用一个实际的例子,还需要考虑例子选用得是否自然。(V)5【判断题】1906年发现的欧几里得的方法论的前言中提到将本书献给埃拉托色尼。(X)数学史、数学情感与数学观(十)1【单选题】卡丹公式是指(C)方程求根公式。A、一次B、二次C、三次D、四次2【单选题】卡尔达诺在其作品(C)中提出“将10分成两部分,使其乘积为40”的问题。A、论赌博游戏B、游戏机遇的学说C、大术D、事物之精妙3【单选题】虚数是由

17、(D)命名的。A、欧拉B、费马C、莱布尼兹D、笛卡尔4【判断题】从历史角度看,数学家研究参数方程是因为直角坐标方程无法解决在某一个时刻运动质点的位置问题。(V)5【判断题】在莱布尼兹的时代,对于虚数的已经有了较为透彻的研究。(X)数学史、数学情感与数学观(十一)1【单选题】庄子天下中可以用于递缩等比数列教学的是(B)。A、暗而不明,郁而不发,天下之人各为其所欲焉以自为方B、一尺之棰,日取其半,万世不竭C、不累于俗,不饰于物,不苟于人,不忮于众D、其理不竭,其来不蜕,芒乎昧乎,未之尽者2【单选题】克莱姆在(B)中用到了五元一次方程组,引入了克莱姆法则。A、随机变量与概率分布B、代数曲线分析引论C

18、、数理统计法D、代数分析基础理论3【单选题】芝诺四大悖论中不包括(C)。A、两分法悖论B、阿喀琉斯悖论C、飞矢不停悖论D、游行队伍悖论4【单选题】切线研究的三大问题不包括(D)。A、光在曲面上的反射B、曲线运动的速度C、曲线的夹角D、曲线的曲率5【判断题】苏格兰数学家格雷戈里利用无穷级数解决了阿喀琉斯悖论问题。(V)数学史、数学情感与数学观(十二)1【单选题】阿波罗尼斯对(C)的切线有详尽的论述。A、圆B、阿基米德螺线C、圆锥曲线D、一般曲线2【单选题】(C)在17世纪分别独立给出了一般曲线切线的求法。A、帕斯卡和笛卡尔B、帕斯卡和欧拉C、费马和笛卡尔D、费马和欧拉3【单选题】欧几里得在几何原

19、本中提出一个圆和一条切线之间(A)。A、插不进去第二条直线B、存在且仅存在第二条切线C、存在无数的切线D、存在两个交点4【判断题】与曲线只有一个公共点,但是不穿过曲线的直线即为曲线的切线。(X)5【判断题】求一般曲线某一点切线的方法之一就是找出其对应的次切线。V数学史、数学情感与数学观(十三)1【单选题】(B)设计了萨莫斯岛上引水的隧道。A、毕达哥拉斯B、欧帕里诺斯C、德谟克利特D、赫拉克利特2【单选题】(D)的作品中记载了萨莫斯岛上引水的隧道。A、斯特拉波B、修昔底德C、荷马D、希罗多德3【单选题】与莫里斯克莱因观点不同的是(C)。A、知识是一个整体,数学史这个整体的一部分B、每一个时代的数

20、学都是这个时代更广阔的文化运动的一部分。C、我们必须将数学与所讲主体相关的别的学科分割开来。D、必需尽可能组织材料,使数学的发展和我们的文明和文化的发展联系起来。4【判断题】萨莫斯岛上引水的隧道的测定方位的方法被作为几何学的应用典范记载在几何原本中。(V)5【判断题】萨莫斯岛上引水的隧道在挖掘过程中为了保证隧道两端挖掘的方向正确,运用到了三角形相似原理。(V)数学史、数学情感与数学观(十四)1【单选题】蒙特堡三个相同形状比例约为()C。A、3:2:0.414B、3:2:0.618C、2:1:0.414D、2:1:0.6182【单选题】欧洲哥特式教堂的圆花窗的几何元素一般只有(C)。A、圆和三角

21、B、圆和正方形C、圆和线段D、圆和菱形3【单选题】蒙特堡是(C)边形。A、六B、七C、八D、九4【判断题】德国天文学家提丢斯建立的数列推动发现了冥王星。(X)5【判断题】德国天文学家提丢斯建立的数列解决了太阳系行星与太阳距离的问题。(V)数学史、数学情感与数学观(十五)1【单选题】伽莫夫为了揭示(D)的奥秘,提出了无人荒岛上的宝藏问题。A、切线B、等比数列C、对顶角D、虚数2【单选题】天文学家托勒密认为入射角与折射角(A)。A、成正比B、成反比C、相等D、因介质不同而不同3【单选题】加莫夫提出的无人荒岛上的宝藏问题中,即使不知道(C),也能找到宝藏。A、橡树B、松树C、断头台D、以上都正确4【

22、判断题】莱布尼茨发表的第一篇微积分论文中,用微积分证明了折射定律。(V)5【判断题】阿尔海森通过实验发现了折射定律,但无法推导出来。(X)数学史、数学情感与数学观(十六)1【单选题】以下作品中,(A)是用数学语言写成的。A、拼凑的裁缝B、亲和力C、西敏寺评论D、现代画家2【单选题】儒勒凡尔纳的作品(D)中提到了麦子多次种植后可以收获的总量的数学问题。A、气球上的五星期B、地心游记C、格兰特船长的儿女D、神秘岛3【单选题】托马斯卡莱尔首次利用(C)解出了一元二次方程。A、代数学B、微积分C、几何学D、作图法4【判断题】爱丽丝漫游奇境记的作者路易斯卡罗尔在牛津大学基督堂学院任数学讲师。(V)5【判

23、断题】格列佛游记中利立浦特人根据主角与利立浦特人的体重之比确定了主角每天可以得到的食物总量。(X)数学史、数学情感与数学观(十七)1【单选题】(C)是伯努利家族代表人物之一,被公认为概率论的先驱之一,较早研究了e作为数学常数问题。A、尼古拉伯努利B、约翰伯努利C、雅各布伯努利D、丹尼尔伯努利2【单选题】毕达哥拉斯学派研究出正多面体只有(C)种。A、3B、4C、5D、63【单选题】根据Mathematical Intellingencer于1988年做出的调查,该杂志的读者认为最美的定理是(B)中的一个。A、半角公式B、欧拉公式C、蔡勒公式D、德摩根公式4【判断题】伽利略认为悬链线是抛物线。(V

24、)5【判断题】美国圣路易拱门其实是悬链线而非抛物线。(V)数学史、数学情感与数学观(十八)1【单选题】法国天文学家G. F. Maraldi于1712年测得蜂房的顶由三个菱形板块构成,其中钝角约为(A)。A、110度B、120度C、130度D、140度2【单选题】绕同一点,(C)不能填满空间。A、正三角形B、正方形C、正五边形D、正六边形3【单选题】昆提利安认为蜜蜂是(C)学家之首。A、逻辑B、伦理C、几何D、代数4【判断题】周长相等时,圆的面积最大。(V)5【判断题】德国数学家克尼格计算出来的最节省材料的蜂房顶部菱形角度与Maraldi观测得出的结论一致。(X)数学史、数学情感与数学观(十九

25、)1【单选题】下列算式中,错误的是(D)。A、07=0B、70=0C、07=0D、70=02【单选题】亚里士多德认为流星的来源是(C)。A、太阳B、月球C、地面D、宇宙3【单选题】婆罗摩笈多在婆罗门修正体系中提出0除以0等于(D)。A、1B、-1C、不存在D、04【判断题】数学史不仅仅可以通过数学家的成功经验来激发学生兴趣,也能通过揭示数学家的谬误而引导学生学习。(V)5【判断题】19世纪数学家对于0的乘除运算已经和当今数学家的看法一致了。(X)数学史、数学情感与数学观(二十)1【单选题】汉代以前,中国人认为球的体积与其外切立方体体积之比为(B)。A、8:13B、9:16C、10:19D、11

26、:232【单选题】婆罗摩笈多给出的四边形面积公式在只针对(C)成立。A、折四边形B、凹四边形C、圆内接四边形D、圆外切四边形3【单选题】阿耶波多天文历算书中认为,四面体的体积公式为(A)。A、底面积乘以高除以2B、底面积乘以高除以3C、边长乘以高除以2D、边长乘以高除以34【判断题】阿基米德已经能够计算椭圆的周长。(V)5【判断题】费马认为当n为非负整数时,2的n次幂加1,所得的结构都是素数。(X)数学史、数学情感与数学观(二十一)1【单选题】Slaught和Lennes在1919年出版的教材中定义棱柱时先定义了(D)。A、角度B、周长C、表面积D、棱柱面2【单选题】()在研究一个立体里面热的

27、传导级数时针对柯西认为的“每一个函数连续,那么加起来都是连续的”做出了反例。(C)A、拉格朗日B、欧拉C、傅里叶D、高斯3【单选题】几何原本认为棱柱是由一些平面构成的,其中由两个面是相对的、相等的、相似且平行的,其他各面都是(D)。A、正方形B、长方形C、菱形D、平行四边形4【判断题】Wentworth和Smith在1913年出版的教材中首次对棱柱做出了迄今为止最科学的定义。(X)5【判断题】柯西认为的“每一个函数连续,那么加起来都是连续的”至今只有一个反例。(X)数学史、数学情感与数学观(二十二)1【单选题】伟烈亚力和李善兰翻译了几何原本的(D)。A、前6卷B、4到12卷C、7-12卷D、后

28、9卷2【单选题】李善兰凭借(C)获得了麦都思的重视。A、方圆阐幽B、弧矢启秘C、对数探源D、麟德术解3【单选题】中国传统数学的最后一位数学家是(A)。A、李善兰B、黄耀奎C、邹伯奇D、徐有壬4【判断题】伟烈亚力来中国的时候没有学习过汉语,只有与精通英语的李善兰合作翻译代微积拾级。(X)5【判断题】中国第一本微积分教材是1856年出版的代微积拾级。(X)作为教学资源的数学史(一)1【单选题】达芬奇研究的“猫的眼睛”的过程中,将图形变成了(D)。A、等边三角形B、直角三角形C、等腰三角形D、等腰直角三角形2【单选题】达芬奇计算银杏叶形的过程需要的数据是(B)。A、B、大半圆的直径C、大圆弧的弧度D

29、、小圆弧的弧度3【单选题】希波克拉底定理的弓月形使古希腊人以为(A)解决了。A、化圆为方B、三等分角C、倍立方问题D、阿基米德猜想4【判断题】希波克拉底最早的职业是建筑师,这为他后来研究几何图形奠定了基础。(X)5【判断题】并不是所有的弓月形都可以变成三角形。(V)作为教学资源的数学史(二)1【单选题】拿破仑在远征埃及图中提出了如何用圆规把一个圆(C)的问题。A、二等分B、三等分C、四等分D、五等分2【单选题】现存的古巴比伦泥板中关于数学的泥板大概有(B)片。A、200B、300C、400D、5003【单选题】加罕纸草书中记载了(D)解决等差数列的问题。A、古希腊人B、古巴比伦人C、古罗马人D

30、、古埃及人4【判断题】古巴比伦人用假设的方法解决了等差数列的问题。(V)5【判断题】古埃及所用的莎草纸与现代意义上的纸不尽相同。(V)作为教学资源的数学史(三)1【单选题】莱因德纸草书中,为了解决递增的等差数列的问题,祭祀可能采用的方式是(D)。A、构建直角坐标系B、尺规作图C、列方程D、设首项为12【单选题】几何原本第九卷命题35记载的等比数列求和方法中,无法计算(C)时的情况。A、q为素数B、q为合数C、q等于1D、q为非整数3【单选题】大部分纸草书都是以(C)写成的。A、象形文字B、楔形文字C、僧侣文D、麦罗埃文4【判断题】莱因德纸草书是英格兰人莱因德在埃及考古过程中发现的。(X)5【判

31、断题】古埃及人在计算等比数列求和时已经大量使用了现代等比数列求和公式。(X)作为教学资源的数学史(四)1【单选题】(D)人阿尔海赛姆研究出的二次幂和公式可以推广为计算一般幂和的公式。A、希腊人B、埃及人C、印度人D、阿拉伯人2【单选题】阿基米德在论劈锥曲面体与球体命题二引理和论螺线命题10中均提到了(A)。A、二次幂和公式B、尺规作图法C、假设法D、切线求法3【单选题】阿基米德通过(C)求出了球的体积。A、逻辑推演B、等比求和法C、杠杆原理D、尺规作图法4【判断题】阿基米德的论方法在1906年发现于伊斯坦布尔。(V)5【判断题】犹太数学家热尔松的计算者之书运用扩缩法计算出了二次幂和。(V)作为

32、教学资源的数学史(五)1【单选题】(B)运用了古代两河流域运用的和差的方法计算椭圆的面积。A、圆锥曲线之代数体系B、圆锥曲线解析C、代数在几何上的应用D、论切触2【单选题】N. Guisnee在1705年出版的(C)中对椭圆面积的计算依然与圆锥有密切关系。A、代数在几何上的应用B、圆锥曲线解析C、圆锥曲线论D、圆锥曲线的几何性质3【单选题】(C)运用了余弦定理计算椭圆的面积。A、论切触B、圆锥曲线的几何性质C、圆锥曲线论D、圆锥曲线之代数体系4【判断题】刘徽的牟合方盖是指两个大小相等的球体的三分之一部分的结合,用以计算球体的体积。(X)5【判断题】毕达哥拉斯学派认为球体是最美的立体图形。(V)

33、作为教学资源的数学史(六)1【单选题】日本人利用(D)的方法计算出了粗略的球的体积。A、组合B、尺规作图C、假设法D、切片2【单选题】卡瓦列里的(A)使得他解决了球体积的问题,也促进了微积分的发展。A、不可分量原理B、重心平衡原理C、表面趋近原理D、体积分量原理3【单选题】祖暅利用牟合方盖求出了(D)。A、椎体的表面积B、椎体的体积C、球的表面积D、球的体积4【判断题】松永良弼16世纪出版的著作算法集成中成功计算出了球的体积。(X)5【判断题】张衡认为球体是外切立方体体积的五分之八。(X)作为教学资源的数学史(七)1【单选题】(D)的阿拉伯文献中记载了阿布韦发模型。A、7世纪B、8世纪C、9世

34、纪D、10世纪2【单选题】帕普斯的著作数学汇编中关于(C)的定理可以用于推导和角公式。A、抛物线切线B、抛物线顶点C、圆的切线D、圆的割线3【单选题】克拉维斯的(C)中提出的模型可以解决和角公式问题。A、星空运动理论B、圆锥计算C、星盘D、测位术4【判断题】利用帕普斯数学汇编中的定理推出的和角公式是有局限的,并非一般性的公式。V5【判断题】阿布韦发模型运用正弦定理解决了和角公式。(X)作为教学资源的数学史(八)1【单选题】(C)运用出入相补的方法证明勾股定理。A、祖冲之B、张衡C、刘徽D、甄鸾2【单选题】达芬奇用了(B)组全等的四边形证明了勾股定理。A、1B、2C、3D、43【单选题】欧几里得

35、证明勾股定理的方式被称为(B)。A、传递的流水B、新娘的座椅C、新生的婴孩D、可控的转换4【判断题】梅文鼎勾股举隅中给出了勾股定理的证明方法。(V)5【判断题】欧几里得证明勾股定理的方式的名称是古罗马人命名的。(X)作为教学资源的数学史(九)1【单选题】根据毕达哥拉斯学派的研究,证明三角形内角和为180度需要过三角形某一顶点做其对边的(B)。A、垂线B、平行线C、平分线D、反向延长线2【单选题】16世纪以前,数学家认为正弦是(B)。A、一条弧线B、一条线段C、一条射线D、一个比值3【单选题】克莱罗批评欧几里得的几何原本(D)。A、证明存在错误B、证明过程不清晰C、没有讲明如何利用其中定理D、没

36、有讲明如何发现了其中定理4【判断题】正弦定理现代主要用向量的方法证明。(V)5【判断题】纳速尔丁的论四边形给出了正弦定理。(V)作为教学资源的数学史(十)1【单选题】帕斯卡针对帕斯卡三角形给出了(A)条性质。A、19B、22C、25D、282【单选题】现阶段认可的最早使用数学归纳法的是(D)。A、古埃及人B、古巴比伦人C、腓尼基人D、古希腊人3【单选题】约翰伯努利认为一个变量的函数是由该变量和(C)以任何方式组成的量。A、特定的数B、特定的比例关系C、一些常数D、一些算式4【判断题】帕斯卡三角里面,任意一条对角线上相邻两个数的比等于各自往两边数的单元的个数之比。(V)5【判断题】F. Klein认为函数概念应该成为数学的基石。(X)【精品文档】第 22 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁