《数字PID控制器的MATLAB仿真.doc》由会员分享,可在线阅读,更多相关《数字PID控制器的MATLAB仿真.doc(40页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date数字PID控制器的MATLAB仿真江苏科技大学 江苏科技大学 电子信息学院 实 验 报 告评定成绩指导教师宋英磊实验课程:计算机控制技术实验名称:数字PID控制器的MATLAB仿真学号: 1345733203 姓名: 胡文千 班级: 13457332 完成日期: 2015年 11 月 16日一、 实验目的(1)掌握用SIMULINK对系统进行仿真的基本方法。(2)对P
2、ID数字控制器进行仿真。二、 实验内容1、基本的PID控制 在模拟控制系统中,控制器最常用的控制规律是PID控制。模拟PID控制系统原理 框图如图1-1所示。图1-1 模拟PID控制系统原理框图PID控制规律为:或写成传递函数的形式仿真1 以二阶线性传递函数为被控对象,进行模拟PID控制。输入信号,仿真时取,采用ODE45迭代方法,仿真时间10s。仿真方法:在Simulink下进行仿真,PID控制由Simulink Extras节点中的PID Controller提供。仿真程序:ex1_1.mdl,如图1-2所示。图1-2 连续系统PID的Simulink仿真程序将该连续系统的模拟PID控制正
3、弦响应结果截图后至于下面的空白处:连续系统的模拟PID控制正弦响应如图1-3所示。 图1-3 连续系统的模拟PID控制正弦响应2、连续系统的数字PID控制仿真计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。因此连续PID控制算法不能直接使用,需要采用离散化方法。在计算机PID控制中,使用的是数字PID控制器。按模拟PID控制算法,以一系列的采样时刻点kT代表连续时间t,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID位置式表达式:式中,e为误差信号(即PID控制器的输入),u为控制信号(即控制器的输出)。在仿真过程中,可根据实际情况,对控制器的输出进行限
4、幅。连续系统的数字PID控制可实现D/A及A/D的功能,符合数字实时控制的真实情况,计算机及DSP的实时PID控制都属于这种情况。 仿真2 设被控对象为一个电机模型传递函数,式中J=0.0067,B=0.1。输入信号为,采用PID控制,其中。采用ODE45方法求解连续被控对象方程。仿真方法: 因为,所以,另,则,因此连续对象微分方程函数ex3f.m如下function dy = ex3f(t,y,flag,para)u=para;J=0.0067;B=0.1; dy=zeros(2,1);dy(1) = y(2);dy(2) = -(B/J)*y(2) + (1/J)*u;控制主程序ex3.m
5、clear all;close all; ts=0.001; %采样周期xk=zeros(2,1);%被控对象经A/D转换器的输出信号y的初值e_1=0;%误差e(k-1)初值u_1=0;%控制信号u(k-1)初值 for k=1:1:2000 %k为采样步数time(k) = k*ts; %time中存放着各采样时刻 rin(k)=0.50*sin(1*2*pi*k*ts); %计算输入信号的采样值 para=u_1; % D/AtSpan=0 ts; tt,xx=ode45(ex3f,tSpan,xk,para); %ode45解系统微分方程%xx有两列,第一列为tt时刻对应的y,第二列为
6、tt时刻对应的y导数xk = xx(end,:); % A/D,提取xx中最后一行的值,即当前y和y导数yout(k)=xk(1); %xk(1)即为当前系统输出采样值y(k) e(k)=rin(k)-yout(k);%计算当前误差de(k)=(e(k)-e_1)/ts; %计算u(k)中微分项输出 u(k)=20.0*e(k)+0.50*de(k);%计算当前u(k)的输出%控制信号限幅if u(k)10.0 u(k)=10.0;endif u(k)=10 u(k)=10;endif u(k)=-10 u(k)=-10;end%根据差分方程计算系统当前输出y(k)yout(k)=-den(2
7、)*y_1-den(3)*y_2-den(4)*y_3+num(2)*u_1+num(3)*u_2+num(4)*u_3;error(k)=rin(k)-yout(k);%当前误差 %更新u(k-1)、u(k-2)、u(k-3)、y(k-1)、y(k-2)、y(k-3)u_3=u_2;u_2=u_1;u_1=u(k);y_3=y_2;y_2=y_1;y_1=yout(k); x(1)=error(k); %比例输出x(2)=(error(k)-error_1)/ts; %微分输出x(3)=x(3)+error(k)*ts; %积分输出 error_1=error(k); %更新e(k-1)en
8、dfigure(1); %作图plot(time,rin,r,time,yout,b);xlabel(time(s),ylabel(rin,yout);将仿真获得的结果截图后附于下面的空白处:S=1时是阶跃跟踪,如图1-5所示;S=2时为方波跟踪,如图1-6所示;S=3时为正弦跟踪,如图1-7所示。图1-5 S=1时阶跃跟踪图1-6 S=2时方波跟踪图1-7 S=3时正弦跟踪。 仿真4 针对于上一例子中被控对象所对应的离散系统,设计代码仿真系统针对三角波和锯齿波的位置式响应。此处附上你的代码:%PID Controllerclear all;close all; ts=0.001;sys=tf
9、(5.235e005,1,87.35,1.047e004,0);dsys=c2d(sys,ts,z);num,den=tfdata(dsys,v); u_1=0.0;u_2=0.0;u_3=0.0;r_1=rand;y_1=0;y_2=0;y_3=0; x=0,0,0;error_1=0; disp(S=1-Triangle,S=2-Sawtooth,S=3-Random)% S=1三角,S=2锯齿,S=3随机 S=input(Number of input signal S:)%接收输入信号代号disp(D=1-Dynamic display,D=1-Direct display)%D=1动
10、画显示,D=1直接显示D=input(D=) for k=1:1:3000time(k)=k*ts; kp=1.0;ki=2.0;kd=0.01; if S=1 %Triangle Signal if mod(time(k),2)=5.0 rin(k)=rand; vr(k)=abs(rin(k)-r_1)/ts); endend u(k)=kp*x(1)+kd*x(2)+ki*x(3); %PID Controller %Restricting the output of controllerif u(k)=10 u(k)=10;endif u(k)=-10 u(k)=-10;end %Li
11、near modelyout(k)=-den(2)*y_1-den(3)*y_2-den(4)*y_3+num(2)*u_1+num(3)*u_2+num(4)*u_3;error(k)=rin(k)-yout(k); r_1=rin(k); u_3=u_2;u_2=u_1;u_1=u(k);y_3=y_2;y_2=y_1;y_1=yout(k); x(1)=error(k); %Calculating Px(2)=(error(k)-error_1)/ts; %Calculating Dx(3)=x(3)+error(k)*ts; %Calculating Ixi(k)=x(3); erro
12、r_1=error(k); if D=1 %Dynamic Simulation Display plot(time,rin,b,time,yout,r); pause(0.000001);endendplot(time,rin,r,time,yout,b);xlabel(time(s);ylabel(rin,yout);将仿真获得的结果截图后附于下面的空白处:根据上一例子中被控对象所对应的离散系统,S=1时是三角波的位置式响应,如图1-8所示;S=2时是锯齿波的位置式响应,如图1-9所示。图1-8 S=1时三角波位置式响应图1-9 S=2时锯齿波位置式响应三、 实验总结PID控制器(按闭环系
13、统误差的比例、积分和微分进行控制的调节器)自20世纪30年代末期出现以来,在工业控制领域得到力量很大的发展和广泛的应用。它的结构简单,参数易于调整,在长期应用中已积累了丰富的经验。特别是在工业控制过程中,由于被控制对象是精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID很容易通过编制计算机程序实现。由于软件系统的灵活性,PID算法可以得到修正和完善,从而使数字PID具有很大的灵活性和适用性。随着计算机技术以及A/D和D/A转换器的发展,实现从模拟控制器到数字控制器的等效转换并不困难。从信号理论角度来看,模拟控制器就是模拟信号滤波器应用于反馈控制系统中作为校正装置。滤波器对控制信号中有用的信号起着抑制和衰减作用。模拟控制器离散化成的数字控制器,也可以认为是数字滤波器。将模拟控制器离散化成的数字控制器的等效离散化设计方法必须保证离散后的数字控制器与等效前的连续控制器具有近似相同的动态特性和频率响应特性。离散后数字控制器的动态特性取决于采样频率和特定的离散化方法,降低采样频率会使离散的数字控制器的逼真度下降,如果采样频率足够高,等效离散的数字控制器与原连续控制器具有很近似的特性。-