《线性代数习题及答案(复旦版).doc》由会员分享,可在线阅读,更多相关《线性代数习题及答案(复旦版).doc(180页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date线性代数习题及答案(复旦版)线性代数习题及答案线性代数习题及答案习题一1. 求下列各排列的逆序数.(1) 341782659; (2) 987654321;(3) n(n-1)321; (4) 13(2n-1)(2n)(2n-2)2.【解】(1) (341782659)=11;(2) (987654321)=36;(3) (n(n-1)321)= 0+1+2 +(n-
2、1)=;(4) (13(2n-1)(2n)(2n-2)2)=0+1+(n-1)+(n-1)+(n-2)+1+0=n(n-1).2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 本行列式的展开式中包含和的项.解: 设 ,其中分别为不同列中对应元素的行下标,则展开式中含项有展开式中含项有.5. 用定义计算下列各行列式.(1); (2).【解】(1) D=(-1)(2314)4!=24; (2) D=12.6. 计算下列各行列式.(1); (2) ;(3); (4) .【解】(1) ;(2) ;7. 证明下列各式.(1) ;(2) ; (3) (4) ;(5) .【证明】(1) (2
3、) (3) 首先考虑4阶范德蒙行列式:从上面的4阶范德蒙行列式知,多项式f(x)的x的系数为但对(*)式右端行列式按第一行展开知x的系数为两者应相等,故(4) 对D2n按第一行展开,得据此递推下去,可得(5) 对行列式的阶数n用数学归纳法.当n=2时,可直接验算结论成立,假定对这样的n-1阶行列式结论成立,进而证明阶数为n时结论也成立.按Dn的最后一列,把Dn拆成两个n阶行列式相加:但由归纳假设从而有8. 计算下列n阶行列式.(1) (2) ;(3). (4)其中 ;(5).【解】(1) 各行都加到第一行,再从第一行提出x+(n-1),得将第一行乘(-1)后分别加到其余各行,得(2) 按第二行
4、展开(3) 行列式按第一列展开后,得(4)由题意,知 .(5) . 即有 由 得 .9. 计算n阶行列式.【解】各列都加到第一列,再从第一列提出,得将第一行乘(-1)后加到其余各行,得10. 计算阶行列式(其中).【解】行列式的各列提取因子,然后应用范德蒙行列式.11. 已知4阶行列式;试求与,其中为行列式的第4行第j个元素的代数余子式.【解】同理 12. 用克莱姆法则解方程组.(1) (2) 【解】方程组的系数行列式为故原方程组有惟一解,为13. 和为何值时,齐次方程组有非零解?【解】要使该齐次方程组有非零解只需其系数行列式即故或时,方程组有非零解.14. 问:齐次线性方程组有非零解时,a,
5、b必须满足什么条件?【解】该齐次线性方程组有非零解,a,b需满足即(a+1)2=4b.15. 求三次多项式,使得【解】根据题意,得这是关于四个未知数的一个线性方程组,由于故得于是所求的多项式为16. 求出使一平面上三个点位于同一直线上的充分必要条件.【解】设平面上的直线方程为ax+by+c=0 (a,b不同时为0)按题设有则以a,b,c为未知数的三元齐次线性方程组有非零解的充分必要条件为上式即为三点位于同一直线上的充分必要条件.习题 二1. 计算下列矩阵的乘积.(1); (2);(3); (4);(5) ; (6).【解】(1) (2); (3) (10);(4) (5); (6) .2. 设
6、,求(1);(2) ;(3) 吗?【解】(1) (2) (3) 由于ABBA,故(A+B)(A-B)A2-B2.3. 举例说明下列命题是错误的.(1) 若, 则; (2) 若, 则或;(3) 若, 则.【解】(1) 以三阶矩阵为例,取,但A0(2) 令,则A2=A,但A0且AE(3) 令则AX=AY,但XY.4.设, 求A2,A3,Ak.【解】5. ,求并证明:.【解】今归纳假设那么所以,对于一切自然数k,都有6. 已知,其中求及.【解】因为|P|= -10,故由AP=PB,得而7. 设,求|. 解:由已知条件,的伴随矩阵为又因为,所以有,且,即 于是有 .8.已知线性变换利用矩阵乘法求从到的
7、线性变换.【解】已知从而由到的线性变换为9. 设,为阶方阵,且为对称阵,证明:也是对称阵.【证明】因为n阶方阵A为对称阵,即A=A,所以 (BAB)=BAB=BAB,故也为对称阵.10.设A,B为n阶对称方阵,证明:AB为对称阵的充分必要条件是AB=BA.【证明】已知A=A,B=B,若AB是对称阵,即(AB)=AB.则 AB=(AB)=BA=BA,反之,因AB=BA,则(AB)=BA=BA=AB,所以,AB为对称阵.11. A为n阶对称矩阵,B为n阶反对称矩阵,证明:(1) B2是对称矩阵.(2) AB-BA是对称矩阵,AB+BA是反对称矩阵.【证明】因A=A,B= -B,故(B2)=BB=
8、-B(-B)=B2;(AB-BA)=(AB)-(BA)=BA-AB= -BA-A(-B)=AB-BA;(AB+BA)=(AB)+(BA)=BA+AB= -BA+A(-B)= -(AB+BA).所以B2是对称矩阵,AB-BA是对称矩阵,AB+BA是反对称矩阵.12. 求与A=可交换的全体二阶矩阵.【解】设与A可交换的方阵为,则由=,得.由对应元素相等得c=0,d=a,即与A可交换的方阵为一切形如的方阵,其中a,b为任意数.13. 求与A=可交换的全体三阶矩阵.【解】由于A=E+,而且由可得由此又可得所以即与A可交换的一切方阵为其中为任意数.14.求下列矩阵的逆矩阵.(1) ; (2) ;(3);
9、 (4);(5); (6),未写出的元素都是0(以下均同,不另注).【解】(1) ; (2) ;(3) ; (4) ;(5) ; (6) .15. 利用逆矩阵,解线性方程组【解】因,而故16. 证明下列命题:(1) 若A,B是同阶可逆矩阵,则(AB)*=B*A*.(2) 若A可逆,则A*可逆且(A*)-1=(A-1)*.(3) 若AA=E,则(A*)=(A*)-1.【证明】(1) 因对任意方阵c,均有c*c=cc*=|c|E,而A,B均可逆且同阶,故可得|A|B|B*A*=|AB|E(B*A*)=(AB) *AB(B*A*)=(AB) *A(BB*)A*=(AB) *A|B|EA*=|A|B|
10、(AB) *. |A|0,|B|0, (AB) *=B*A*.(2) 由于AA*=|A|E,故A*=|A|A-1,从而(A-1) *=|A-1|(A-1)-1=|A|-1A.于是A* (A-1) *=|A|A-1|A|-1A=E,所以 (A-1) *=(A*)-1.(3) 因AA=E,故A可逆且A-1=A.由(2)(A*)-1=(A-1) *,得(A*)-1=(A) *=(A*).17.已知线性变换求从变量到变量的线性变换.【解】已知且|A|=10,故A可逆,因而所以从变量到变量的线性变换为18.解下列矩阵方程.(1) ;(2);(3) ;(4) .【解】(1) 令A=;B=.由于故原方程的惟
11、一解为同理(2) X=; (3) X=; (4) X=19. 若 (k为正整数),证明:.【证明】作乘法从而E-A可逆,且20.设方阵A满足A2A2EO,证明A及A2E都可逆,并求A-1及(A+2E)-1.【证】因为A2-A-2E=0,故由此可知,A可逆,且同样地由此知,A+2E可逆,且21. 设,,求.【解】由AB=A+2B得(A-2E)B=A.而即A-2E可逆,故22. 设.其中, 求.【解】因可逆,且故由得23. 设次多项式,记,称为方阵的次多项式.(1), 证明,;(2) 设, 证明,.【证明】(1)即k=2和k=3时,结论成立.今假设那么所以,对一切自然数k,都有而(2) 由(1)与
12、A=P -1BP,得B=PAP -1.且Bk=( PAP -1)k= PAkP -1,又24. ,证明矩阵满足方程.【证明】将A代入式子得故A满足方程.25. 设阶方阵的伴随矩阵为,证明:(1) 若,则;(2) .【证明】(1) 若|A|=0,则必有|A*|=0,因若| A*|0,则有A*( A*)-1=E,由此又得A=AE=AA*( A*)-1=|A|( A*)-1=0,这与| A*|0是矛盾的,故当|A| =0,则必有| A*|=0.(2) 由A A*=|A|E,两边取行列式,得|A| A*|=|A|n,若|A|0,则| A*|=|A|n-1若|A|=0,由(1)知也有| A*|=|A|n
13、-1.26.设.求(1) ; (2); (3) ;(4)k (为正整数).【解】(1); (2) ;(3) ; (4).27. 用矩阵分块的方法,证明下列矩阵可逆,并求其逆矩阵.(1); (2);(3).【解】(1) 对A做如下分块 其中的逆矩阵分别为所以A可逆,且同理(2)(3) 习题 三1. 略.见教材习题参考答案.2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 略.见教材习题参考答案.5.,证明向量组线性相关.【证明】因为所以向量组线性相关.6. 设向量组线性无关,证明向量组也线性无关,这里【证明】 设向量组线性相关,则存在不全为零的数使得把代入上式,得.又已知线性无关
14、,故该方程组只有惟一零解,这与题设矛盾,故向量组线性无关.7. 略.见教材习题参考答案.8. .证明:如果,那么线性无关.【证明】已知,故R(A)=n,而A是由n个n维向量组成的,所以线性无关.9. 设是互不相同的数,rn.证明:是线性无关的.【证明】任取n-r个数tr+1,tn使t1,tr,tr+1,tn互不相同,于是n阶范德蒙行列式从而其n个行向量线性无关,由此知其部分行向量也线性无关.10. 设的秩为r且其中每个向量都可经线性表出.证明:为的一个极大线性无关组.【证明】若 (1)线性相关,且不妨设 (tr) (2)是(1)的一个极大无关组,则显然(2)是的一个极大无关组,这与的秩为r矛盾
15、,故必线性无关且为的一个极大无关组.11. 求向量组=(1,1,1,k),=(1,1,k,1),=(1,2,1,1)的秩和一个极大无关组.【解】把按列排成矩阵A,并对其施行初等变换.当k=1时,的秩为为其一极大无关组.当k1时,线性无关,秩为3,极大无关组为其本身.12. 确定向量,使向量组与向量组=(0,1,1),=(1,2,1),=(1,0,-1)的秩相同,且可由线性表出.【解】由于而R(A)=2,要使R(A)=R(B)=2,需a-2=0,即a=2,又要使可由线性表出,需b-a+2=0,故a=2,b=0时满足题设要求,即=(2,2,0).13. 设为一组n维向量.证明:线性无关的充要条件是
16、任一n维向量都可经它们线性表出.【证明】充分性: 设任意n维向量都可由线性表示,则单位向量,当然可由它线性表示,从而这两组向量等价,且有相同的秩,所以向量组的秩为n,因此线性无关.必要性:设线性无关,任取一个n维向量,则线性相关,所以能由线性表示.14. 若向量组(1,0,0),(1,1,0),(1,1,1)可由向量组,线性表出,也可由向量组,线性表出,则向量组,与向量组,等价.证明:由已知条件,且向量组(1,0,0),(1,1,0),(1,1,1)可由向量组,线性表出,即两向量组等价,且,又,向量组(1,0,0),(1,1,0),(1,1,1)可由向量组,线性表出,即两向量组等价,且,所以向
17、量组,与向量组,等价.15. 略.见教材习题参考答案.16. 设向量组与秩相同且能经线性表出.证明与等价.【解】设向量组 (1)与向量组 (2)的极大线性无关组分别为 (3)和 (4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即因(4)线性无关,故(3)线性无关的充分必要条件是|aij|0,可由(*)解出,即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价.17. 设A为mn矩阵,B为sn矩阵.证明:.【证明】因A,B的列数相同,故A,B的行向量有相同的维数,矩阵可视为由矩阵A扩充行向量而成,故
18、A中任一行向量均可由中的行向量线性表示,故同理故有又设R(A)=r,是A的行向量组的极大线性无关组,R(B)=k, 是B的行向量组的极大线性无关组.设是中的任一行向量,则若属于A的行向量组,则可由表示,若属于B的行向量组,则它可由线性表示,故中任一行向量均可由,线性表示,故所以有.18. 设A为sn矩阵且A的行向量组线性无关,K为rs矩阵.证明:BKA行无关的充分必要条件是R(K)=r.【证明】设A=(As,Ps(n-s),因为A为行无关的sn矩阵,故s阶方阵As可逆.()当B=KA行无关时,B为rn矩阵.r=R(B)=R(KA)R(K),又K为rs矩阵R(K)r, R(K)=r.()当r=R
19、(K)时,即K行无关,由B=KA=K(As,Ps(n-s)=(KAs,KPs(n-s)知R(B)=r,即B行无关.19. 略.见教材习题参考答案.20. 求下列矩阵的行向量组的一个极大线性无关组.(1); (2).【解】(1) 矩阵的行向量组的一个极大无关组为;(2) 矩阵的行向量组的一个极大无关组为.21. 略.见教材习题参考答案.22. 集合V1()R且0是否构成向量空间?为什么?【解】由(0,0,0)V1知V1非空,设)则因为所以,故是向量空间.23. 试证:由,生成的向量空间恰为R3.【证明】把排成矩阵A=(),则,所以线性无关,故是R3的一个基,因而生成的向量空间恰为R3.24. 求
20、由向量所生的向量空间的一组基及其维数.【解】因为矩阵是一组基,其维数是3维的.25. 设,证明:.【解】因为矩阵由此知向量组与向量组的秩都是2,并且向量组可由向量组线性表出.由习题15知这两向量组等价,从而也可由线性表出.所以.26. 在R3中求一个向量,使它在下面两个基下有相同的坐标.【解】设在两组基下的坐标均为(),即即求该齐次线性方程组得通解 (k为任意实数)故27. 验证为R3的一个基,并把用这个基线性表示.【解】设又设,即记作 B=AX.则因有,故为R3的一个基,且即.习题四1. 用消元法解下列方程组.(1) (2) 【解】(1) 得所以(2) 解-2得 x2-2x3=0- 得 2x
21、3=4得同解方程组由得 x3=2,由得 x2=2x3=4,由得 x1=2-2x3 -2x2 = -10,得 (x1,x2,x3)T=(-10,4,2)T.2. 求下列齐次线性方程组的基础解系.(1) (2) (3) (4) 【解】(1) 得同解方程组得基础解系为.(2) 系数矩阵为 其基础解系含有个解向量.基础解系为(3) 得同解方程组取得基础解系为(-2,0,1,0,0)T,(-1,-1,0,1,0).(4) 方程的系数矩阵为 基础解系所含解向量为n-R(A)=5-2=3个取为自由未知量 得基础解系 3. 解下列非齐次线性方程组.(1) (2) (3) (4) 【解】(1) 方程组的增广矩阵
22、为得同解方程组(2) 方程组的增广矩阵为得同解方程组即令得非齐次线性方程组的特解xT=(0,1,0,0)T.又分别取得其导出组的基础解系为 方程组的解为(3) 方程组无解.(4) 方程组的增广矩阵为分别令得其导出组的解为令,得非齐次线性方程组的特解为:xT=(-16,23,0,0,0)T, 方程组的解为其中为任意常数.4. 某工厂有三个车间,各车间相互提供产品(或劳务),今年各车间出厂产量及对其它车间的消耗如下表所示.车间消耗系数车间123出厂产量(万元)总产量(万元)10.10.20.4522x120.20.20.30x230.500.1255.6x3表中第一列消耗系数0.1,0.2,0.5
23、表示第一车间生产1万元的产品需分别消耗第一,二,三车间0.1万元,0.2万元,0.5万元的产品;第二列,第三列类同,求今年各车间的总产量.解:根据表中数据列方程组有即 解之 5. 取何值时,方程组(1)有惟一解,(2)无解,(3)有无穷多解,并求解.【解】方程组的系数矩阵和增广矩阵为|A|=.(1) 当1且-2时,|A|0,R(A)=R(B)=3. 方程组有惟一解(2) 当=-2时,R(A)R(B), 方程组无解.(3) 当=1时R(A)=R(B)3,方程组有无穷解.得同解方程组 得通解为6. 齐次方程组当取何值时,才可能有非零解?并求解.【解】方程组的系数矩阵为|A|=当|A|=0即=4或=
24、-1时,方程组有非零解.(i) 当=4时,得同解方程组(ii) 当=-1时,得 ()T=k(-2,-3,1)T.kR7. 当a,b取何值时,下列线性方程组无解,有惟一解或无穷多解?在有解时,求出其解.(1) (2) 【解】方程组的增广矩阵为(1) (i) 当b-52时,方程组有惟一解(ii) 当b=-52,a-1时,方程组无解.(iii) 当b=-52,a=-1时,方程组有无穷解.得同解方程组 (*)其导出组的解为非齐次线性方程组(*)的特解为取x4=1, 原方程组的解为 (2) (i) 当a-10时,R(A)=R()=4,方程组有惟一解.(ii) 当a-1=0时,b-1时,方程组R(A)=2
25、R()=3, 此时方程组无解.(iii) 当a=1,b= -1时,方程组有无穷解.得同解方程组取 得方程组的解为8. 设,求一秩为2的3阶方阵B使AB=0.【解】设B=(b1 b2 b3),其中bi(i=1,2,3)为列向量,由为Ax=0的解.求=0的解.由得同解方程组 其解为取则9.已知是三元非齐次线性方程组Ax=b的解,且R(A)=1及求方程组Ax=b的通解.【解】Ax=b为三元非齐次线性方程组R(A)=1Ax=0的基础解系中含有3-R(A)=3-1=2个解向量.由为Ax=b的解为Ax=0的解,且线性无关为Ax=0的基础解系.又 方程组Ax=b的解为10. 求出一个齐次线性方程组,使它的基
26、础解系由下列向量组成.(1) (2) 【解】(1) 设齐次线性方程组为Ax=0由为Ax=0的基础解系,可知令 k1=x2 , k2=x3Ax=0即为x1+2x2-3x3=0.(2) A()=0A的行向量为方程组为的解.即的解为得基础解系为=(-5 -1 1 1 0)T =(-1 -1 1 0 1)TA=方程为11. 设向量组=(1,0,2,3),=(1,1,3,5),=(1,-1,a+2,1),=(1,2,4,a+8),=(1,1,b+3,5)问:(1) a,b为何值时,不能由,线性表出?(2) a,b为何值时,可由, 惟一地线性表出?并写出该表出式.(3) a,b为何值时,可由,线性表出,且
27、该表出不惟一?并写出该表出式.【解】 (*)(1) 不能由,线性表出方程组(*)无解,即a+1=0,且b0.即a=-1,且b0.(2) 可由,惟一地线性表出方程组(*)有惟一解,即a+10,即a-1.(*) 等价于方程组(3) 可由,线性表出,且表出不惟一方程组(*)有无数解,即有a+1=0,b=0a=-1,b=0.方程组(*)为常数.12. 证明:线性方程组有解的充要条件是.【解】方程组有解的充要条件,即R(A)=4=R(A)得证.13. 设是非齐次线性方程组Ax=b的一个解,是对应的齐次线性方程组的一个基础解系.证明(1)线性无关;(2)线性无关.【 证明】(1) 线性无关成立,当且仅当k
28、i=0(i=1,2,n-r),k=0为Ax=0的基础解系由于.由于为线性无关线性无关.(2) 证线性无关.成立当且仅当ki=0(i=1,2,n-r),且k=0即由(1)可知,线性无关.即有ki=0(i=1,2,n-r),且线性无关.14. 设有下列线性方程组()和()() () (1) 求方程组()的通解;(2) 当方程组()中的参数m,n,t为何值时,()与()同解? 解:(1)对方程组()的增广矩阵进行行初等变换由此可知系数矩阵和增广矩阵的秩都为3,故有解.由方程组 (*)得方程组(*)的基础解系令,得方程组()的特解 于是方程组()的通解为,k为任意常数。(2) 方程组()的增广矩阵为系
29、数矩阵与增广矩阵的秩均为3,令 (*)方程组(*)的基础解系为当时,当时,方程组()与方程组()同解,则,故有把m,n代入方程组,同时有 ,即t = 6.也就是说当m=2,n=4,t=6时,方程组()与方程组()同解.习题五1. 计算.【解】2.把下列向量单位化.(1) (3,0,1,4); (2)(5,1,2,0).【解】3. 利用施密特正交化方法把下列向量组正交化.(1) 1 =(0,1,1), 2 =(1,1,0), 3 =(1,0,1);(2) 1 =(1,0,-1,1), 2 =(1,-1,0,1), 3 =(-1,1,1,0)【解】4. 试证,若n维向量与正交,则对于任意实数k,l
30、,有k与l正交.【证】与正交. 与正交.5.下列矩阵是否为正交矩阵.【解】(1) AAE, A不是正交矩阵(2) AA=EA为正交矩阵6.设x为n维列向量,xx1,令HExx.求证H是对称的正交矩阵.【证】 H为对称矩阵. H是对称正交矩阵.7. 设A与B都是n阶正交矩阵,证明AB也是正交矩阵.【证】A与B为n阶正交矩阵AA=EBB=E(AB)(AB)=AB(BA)=A(BB)A=AEA=AA=E AB也是正交矩阵.8.判断下列命题是否正确.(1) 满足Axx的x一定是A的特征向量;(2) 如果x1,xr是矩阵A对应于特征值的特征向量.则k1x1k2x2krxr也是A对应于的特征向量;(3)
31、实矩阵的特征值一定是实数.【解】(1) .Ax=x,其中当x=0时成立,但x=0不是A的特征向量.(2) .例如:E33x=x特征值=1, 的特征向量有则不是E33的特征向量.(3) .不一定.实对称矩阵的特征值一定是实数.9. 求下列矩阵的特征值和特征向量.【解】(1)当时,为得解对应的特征向量为.当时, 其基础解系为,对应的特征向量为 特征值为(i) 当时,其基础解系为 对应于=2的特征向量为且使得特征向量不为0.(ii)当时,解得方程组的基础解系为 对应于的特征向量为特征值为(i) 当时,得基础解系为对应的特征向量为(ii) 当时,其基础解系为(2,-2,1),所以与对应的特征向量为(i
32、ii) 当时,其基础解系为(2,1,-2) 与对应的特征向量为 A的特征值为1,2.(i) 当时,其基础解系为(4,-1,1,0). 其对应的特征向量为k(4,-1,1,0)T,kR且k0.(ii) 当时,其基础解系为:(1,0,0,0). 其对应的特征向量为10.设3阶方阵A的特征值为11,20,31,对应的特征向量依次为求矩阵A.【解】由于为不同的特征值线性无关,则有可逆11. 设3阶实对称矩阵A的特征值为1,1,1,与特征值1对应的特征向量x(1,1,1),求A.【解】对应的特征向量为x1=(-1,1,1)T,设对应的特征向量为x2=(x1,x2,x3)T,A为实对称矩阵,所以(x1,x
33、2)=0,即有-x1+x2+x3=0.得方程组的基础解系为可知为对应的特征向量.将正交化得=(-1,1,1)T, 单位化:; =(1,1,0)T, ; 则有12. 若n阶方阵满足A2A,则称A为幂等矩阵,试证,幂等矩阵的特征值只可能是1或者是零.【证明】设幂等矩阵的特征值为,其对应的特征向量为x.由A2=A可知所以有或者=1.13. 若A2E,则A的特征值只可能是1.【证明】设是A的特征值,x是对应的特征向量.则Ax=x A2x=(Ax)=2x由A2=E可知x=Ex=A2x=2x(2-1)x=0,由于x为的特征向量, x02-1=0=1.14. 设1,2是n阶矩阵A的两个不同的特征根,1,2分
34、别是A的属于1, 2的特征向量,证明1+2不是A的特征向量.证明:假设1+2是A的属于特征根的特征向量,则A(1+2)=(1+2)=1+2.又 A(1+2)= A1+ A 2=11+22于是有 (-1)1+(-2)2 =0由于,1与2线性无关,故-1=-2=0.从而与矛盾,故1+2不是A的特征向量.15. 求正交矩阵T,使TAT为对角矩阵.【解】(i)当时,方程组的基础解系为(-2,1,0)T,(2,0,1)T.(ii) 当时,其基础解系为.取,单位化为,取,取,使正交化.令单位化得.(i) 当时,其基础解系为正交化得单位化得 (ii) 当时,其基础解系为 =(2,1,2)T.单位化得(i)
35、当时,其基础解系为由于()=0,所以正交.将它们单位化得 (ii) 当时,其基础解系为=(1,-1,-1,1)T,单位化得(iii) 当时,其基础解系为=(-1,-1,1,1)T,单位化为(i) 当=2时,其基础解系为=(2,1,-2)T,单位化得,(ii) 当=5时,其基础解系为=(2,-2,1)T.单位化得.(iii) 当=-1时,其基础解系为=(1,2,2)T,单位化得,得正交阵16. 设矩阵与相似.(1) 求x与y;(2) 求可逆矩阵P,使P1AP=B.【解】(1)由AB可知,A有特征值为-1,2,y.由于-1为A的特征值,可知.将x=0代入|A-E|中可得可知y= -2.(2) (i
36、) 当=-1时,其基础解系为 =(0,-2,1)T,= -1对应的特征向量为 =(0,-2,1)T.(ii) 当=2时,其基础解系为 =(0,1,1)T所以=2对应的特征向量为 =(0,1,1)T() 当=-2时,其基础解系为 =(-2,1,1)T,取可逆矩阵则17. 设, 求A100.【解】特征值为(i) 当时,其基础解系为(ii) 当时,其基础解系为(-1,1,2)T.令,则18.将下列二次型用矩阵形式表示.(1) ;(2) ;(3) .【解】(1)(2) (3) 19. 写出二次型 的矩阵.【解】20. 当t为何值时,二次型的秩为2.【解】 21. 已知二次型经过正交变换化为标准型,求参数a,b及所用的正交变换矩阵.【解】由题知二次型矩阵当时,即有 2ab=0.当时,当时,() 当时,得基础解系为=(1,0,-1)T,单位化() 当时,其基础解系为=(0,1,0)T.(iii) 当时,其基础解系为=(1,0,1)T.单位化得 得正交变换矩阵22. 用配方法把下列二次型化为标准型,并求所作变换.【解】令由于 上面交换为可逆变换.得令为可逆线性变换令为可逆线性交换所作线性交换为23. 用初等变