高中数学必修二8.示范教案(2.3.1--直线与平面垂直的判定)公开课教案课件教案课件.doc

上传人:知****量 文档编号:28315283 上传时间:2022-07-27 格式:DOC 页数:13 大小:406.04KB
返回 下载 相关 举报
高中数学必修二8.示范教案(2.3.1--直线与平面垂直的判定)公开课教案课件教案课件.doc_第1页
第1页 / 共13页
高中数学必修二8.示范教案(2.3.1--直线与平面垂直的判定)公开课教案课件教案课件.doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《高中数学必修二8.示范教案(2.3.1--直线与平面垂直的判定)公开课教案课件教案课件.doc》由会员分享,可在线阅读,更多相关《高中数学必修二8.示范教案(2.3.1--直线与平面垂直的判定)公开课教案课件教案课件.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定整体设计教学分析 空间中直线与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中直线与平面的垂直问题是连接线线垂直和面面垂直的桥梁和纽带,可以说线面垂直是立体几何的核心.本节重点是直线与平面垂直的判定定理的应用.三维目标1.探究直线与平面垂直的判定定理,培养学生的空间想象能力.2.掌握直线与平面垂直的判定定理的应用,培养学生分析问题、解决问题的能力.3.让学生明确直线与平面垂直在立体几何中的地位.重点难点教学重点:直线与平面垂直的判定.教学难点:灵活应用直线与平面垂直判定定理

2、解决问题.课时安排 1课时教学过程导入新课思路1.(情境导入) 日常生活中,我们对直线与平面垂直有很多感性认识,比如,旗杆与地面的位置关系,大桥的桥柱与水面的位置关系等,都给我们以直线与平面垂直的印象. 在阳光下观察直立于地面的旗杆及它在地面的影子.随着时间的变化,尽管影子BC的位置在移动,但是旗杆AB所在直线始终与BC所在直线垂直.也就是说,旗杆AB所在直线与地面内任意一条不过点B的直线BC也是垂直的.思路2.(事例导入) 如果一条直线垂直于一个平面的无数条直线,那么这条直线是否与这个平面垂直?举例说明. 如图1,直线AC1与直线BD、EF、GH等无数条直线垂直,但直线AC1与平面ABCD不

3、垂直.图1推进新课新知探究提出问题探究直线与平面垂直的定义和画法.探究直线与平面垂直的判定定理.用三种语言描述直线与平面垂直的判定定理.探究斜线在平面内的射影,讨论直线与平面所成的角.探究点到平面的距离.活动:问题引导学生结合事例观察探究.问题引导学生结合事例实验探究.问题引导学生进行语言转换.问题引导学生思考其合理性.问题引导学生回忆点到直线的距离得出点到平面的距离.讨论结果:直线与平面垂直的定义和画法:教师演示实例并指出书脊(想象成一条直线)、各书页与桌面的交线,由于书脊和书页底边(即与桌面接触的一边)垂直,得出书脊和桌面上所有直线都垂直,书脊和桌面的位置关系给了我们直线和平面垂直的形象.

4、从而引入概念:一条直线和平面内的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面.过一点有且只有一条直线和一个平面垂直;过一点有且只有一个平面和一条直线垂直.平面的垂线和平面一定相交,交点叫做垂足.直线和平面垂直的画法及表示如下:如图2,表示方法为:a. 图2 图3如图3,请同学们准备一块三角形的纸片,我们一起做一个实验:过ABC的顶点A翻折纸片,得折痕AD,将翻折后的纸片竖起放置在桌面上(BD,DC与桌面接触).(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在的平面垂直?容易发现,当且仅当折痕AD是BC边上的高时,AD所在直线与桌

5、面所在的平面垂直.如图4.(1) (2)图4 所以,当折痕AD垂直平面内的一条直线时,折痕AD与平面不垂直,当折痕AD垂直平面内的两条直线时,折痕AD与平面垂直.直线和平面垂直的判定定理用文字语言表示为: 如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 直线和平面垂直的判定定理用符号语言表示为:l.直线和平面垂直的判定定理用图形语言表示为:如图5, 图5 图6斜线在平面内的射影.斜线:一条直线和一个平面相交,但不和这个平面垂直时,这条直线就叫做这个平面的斜线.斜足:斜线和平面的交点.斜线在平面内的射影:从斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在

6、这个平面内的射影. 直线与平面相交,直线与平面的相互位置类同于两条相交直线,也需要用角来表示,但过交点在平面内可以作很多条直线.与平面相交的直线l与平面内的线a、b所成的角是不相等的.为了定义的确定性,我们必须找到一些角中有确定值的,又能准确描述其位置的一个角,这就是由斜线与其在平面内的射影所成的锐角作为直线和平面所成的角. 平面的一条斜线和它在这个平面内的射影所成的锐角,叫做这条直线和这个平面所成的角. 特别地:如果一条直线垂直于平面,我们说它们所成的角为直角. 一条直线和平面平行或在平面内,我们说它们所成的角为0.如图6,l是平面的一条斜线,点O是斜足,A是l上任意一点,AB是的垂线,点B

7、是垂足,所以直线OB(记作l)是l在内的射影,AOB(记作)是l与所成的角. 直线和平面所成的角是一个非常重要的概念,在实际中有着广泛的应用,如发射炮弹时,当炮筒和地面所成的角为多少度时,才能准确地命中目标,也即射程为多远?又如铅球运动员在投掷时,以多大的角度投掷,投出的距离最远?点到平面的距离:经过一点向平面引垂线,垂足叫做这点在这个平面内的射影,点在平面内的射影还是一个点.垂线段:上述的点与垂足间的线段叫做这点到这个平面的垂线段.点到平面的距离:垂线段的长叫做点到平面的距离.应用示例思路1例1 如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.解:已知ab,a.求证:b

8、.图7证明:如图7,在平面内作两条相交直线m、n,设mn=A.*变式训练 如图8,已知点P为平面ABC外一点,PABC,PCAB,求证:PBAC.图8证明:过P作PO平面ABC于O,连接OA、OB、OC.PO平面ABC,BC平面ABC,POBC.又PABC,BC平面PAO.又OA平面PAO,BCOA.同理,可证ABOC.O是ABC的垂心.OBAC.可证POAC.AC平面PBO.又PB平面PBO,PBAC.点评:欲证线面垂直需要转化为证明线线垂直,欲证线线垂直往往转化为线面垂直.用符号语言证明问题显得清晰、简洁.例2 如图9,在正方体ABCDA1B1C1D1中,求直线A1B和平面A1B1CD所成

9、的角.图9活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.解:连接BC1交B1C于点O,连接A1O.设正方体的棱长为a,因为A1B1B1C1,A1B1B1B,所以A1B1平面BCC1B1.所以A1B1BC1.又因为BC1B1C,所以BC1平面A1B1CD.所以A1O为斜线A1B在平面A1B1CD内的射影,BA1O为直线A1B与平面A1B1CD所成的角.在RtA1BO中,A1B=,BO=,所以BO=,BA1O=30.因此,直线A1B和平面A1B1CD所成的角为30.变式训练 如图10,四面体ABCD的棱长都相等,Q是AD的中

10、点,求CQ与平面DBC所成的角的正弦值.图10解:过A作AO面BCD,连接OD、OB、OC,则可证O是BCD的中心,作QPOD,QPAO,QP面BCD.连接CP,则QCP即为所求的角.设四面体的棱长为a,在正ACD中,Q是AD的中点,CQ=.QPAO,Q是AD的中点,QP=,得sinQCP=.点评:求直线与平面所成的角,是本节的又一重点,作线面角的关键是找出平面的垂线.思路2例1 (2007山东高考,文20)如图11(1),在直四棱柱ABCDA1B1C1D1中,已知DC=DD1=2AD=2AB,ADDC,ABDC.(1)(1)求证:D1CAC1;(2)设E是DC上一点,试确定E的位置,使D1E

11、平面A1BD,并说明理由.(1)证明:在直四棱柱ABCDA1B1C1D1中,连接C1D,如图11(2).(2)DC=DD1,四边形DCC1D1是正方形.DC1D1C.又ADDC,ADDD1,DCDD1=D,AD平面DCC1D1,D1C平面DCC1D1.ADD1C.AD、DC1平面ADC1,且ADDC1=D,D1C平面ADC1.又AC1平面ADC1,D1CAC1.(2)解:连接AD1、AE,如图11(3).(3)图11设AD1A1D=M,BDAE=N,连接MN,平面AD1E平面A1BD=MN,要使D1E平面A1BD,需使MND1E,又M是AD1的中点,N是AE的中点.又易知ABNEDN,AB=D

12、E,即E是DC的中点.综上所述,当E是DC的中点时,可使D1E平面A1BD.变式训练 如图12,在正方体ABCDA1B1C1D1,G为CC1的中点,O为底面ABCD的中心.求证:A1O平面GBD.图12证明:BDA1O.又A1O2=A1A2+AO2=a2+()2=,OG2=OC2+CG2=()2+()2=,A1G2=A1C12+C1G2=(a)2+()2=,A1O2+OG2=A1G2.A1OOG.又BDOG=O,A1O平面GBD.点评:判断线面垂直往往转化为线线垂直,勾股定理也是证明线线垂直的重要方法.例2 如图13,ABCD为正方形,过A作线段SA面ABCD,又过A作与SC垂直的平面交SB、

13、SC、SD于E、K、H,求证:E、H分别是点A在直线SB和SD上的射影.图13证明:SABC,又ABBC,SAAB=A,BC平面SAB.BCAE.SC平面AHKE,SCAE.又BCSC=C,AE平面SBC.AESB,即E为A在SB上的射影.同理可证,H是点A在SD上的射影.变式训练 已知RtABC的斜边BC在平面内,两直角边AB、AC与都斜交,点A在平面内的射影是点A,求证:BAC是钝角.证明:如图14,过A作ADBC于D,连接AD,图14AA,BC,AABC.BCAD.tanBAD=tanBAD=,tanCAD=tanCAD=,BADBAD,CADCAD.BACBAC,即BAC是钝角.知能训

14、练 如图15,已知a、b是两条相互垂直的异面直线,线段AB与两异面直线a、b垂直且相交,线段AB的长为定值m,定长为n(nm)的线段PQ的两个端点分别在a、b上移动,M、N分别是AB、PQ的中点.图15求证:(1)ABMN;(2)MN的长是定值.证明:(1)取PB中点H,连接HN,则HNb.又ABb,ABHN.同理,ABMH.AB平面MNH.ABMN.(2)b平面PAB.bPB.在RtPBQ中,BQ2=PQ2-PB2=n2-PB2, 在RtPBA中,PA2=PB2-AB2=PB2-m2, 两式相加PA2+BQ2=n2-m2,ab,MHN=90.MN=(定值).拓展提升1.如图16,已知在侧棱垂

15、直于底面三棱柱ABCA1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点.图16(1)求证:ACBC1;(2)求证:AC1平面CDB1;(1)证明:在ABC中,AC=3,AB=5,BC=4,ABC为直角三角形.ACCB.又CC1面ABC,AC面ABC,ACCC1.AC面BCC1B1.又BC1面BCC1B1,ACBC1.(2)证明:连接B1C交BC1于E,则E为BC1的中点,连接DE,则在ABC1中,DEAC1.又DE面CDB1,则AC1面B1CD.课堂小结知识总结:利用面面垂直的性质定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:

16、转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.作业 课本习题2.2 B组3、4.设计感想 线面关系是线线关系和面面关系的桥梁和纽带,尤其是线面垂直问题是立体几何的核心,一个立体几何问题能否解决往往取决于能否作出平面的垂线;面面垂直的性质定理恰好能解决这个问题,因此它是高考考查的重点,本节不仅选用了大量经典好题,还选用了大量的2007高考模拟题以及2007年高考题,相信能够帮助大家解决立体几何中的重点难点问题.下课啦,咱们来听个小故事吧:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。活动过程:1.主持人上场,

17、神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语:“双手抓不起,一刀劈不开,煮饭和洗衣,都要请它来。”主持人问:“谁知道这是什么?”生答:“水!”一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?”主持人:我宣布:“水”是万物之源主题班会现在开始。 水说:“同学们,你们知道我有多重要吗?”齐答:“知道。”甲:如果没有水,我们人类就无法生存。小熊说:我们动物可喜欢你了,没有水我们会死掉的。花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。主持人:下面请听快板水的用处真叫大竹板一敲来说话,水的用处真

18、叫大;洗衣服,洗碗筷,洗脸洗手又洗脚,煮饭洗菜又沏茶,生活处处离不开它。栽小树,种庄稼,农民伯伯把它夸;鱼儿河马大对虾,日日夜夜不离它;采煤发电要靠它,京城美化更要它。主持人:同学们,听完了这个快板,你们说水的用处大不大?甲说:看了他们的快板表演,我知道日常生活种离不了水。乙说:看了表演后,我知道水对庄稼、植物是非常重要的。丙说:我还知道水对美化城市起很大作用。2.主持人:水有这么多用处,你们该怎样做呢?(1)(生):我要节约用水,保护水源。(2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。(3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,

19、很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。(4)(生):我要用洗脚水冲厕所。3.主持人:大家谈得都很好,下面谁想出题考考大家,答对了请给点掌声。(1)(生):小明让爸爸刷车时把水龙头开小点,请回答对不对。(2)(生):小兰告诉奶奶把洗菜水别到掉,留冲厕所用。(3)一生跑上说:主持人请把手机借我用用好吗?我想现在就给姥姥打个电话,告诉她做饭时别把淘米水到掉了,用它冲厕所或浇花用。(电话内容略写)(4)一生说:主持人我们想给大家表演一个小品行吗?主持人:可以,大家欢迎!请看小品这又不是我家的大概意思是:学校男厕所便池堵了,水龙头又大开,水流满地。学生甲乙丙三人分

20、别上厕所,看见后又皱眉又骂,但都没有关水管,嘴里还念念有词,又说:“反正不是我家的。”旁白:“那又是谁家的呢?”主持人:看完这个小品,你们有什么想法吗?谁愿意给大家说说?甲:刚才三个同学太自私了,公家的水也是大家的,流掉了多可惜,应该把水龙头关上。乙:上次我去厕所看见水龙头没关就主动关上了。主持人:我们给他鼓鼓掌,今后你们发现水龙头没关会怎样做呢?齐:主动关好。小记者:同学们,你们好!我想打扰一下,听说你们正在开班会,我想采访一下,行吗?主持人:可以。小记者:这位同学,你好!通过参加今天的班会你有什么想法,请谈谈好吗?答:我要做节水的主人,不浪费一滴水。小记者:请这位同学谈谈好吗?答:今天参加

21、班会我知道了节约每一滴水要从我们每个人做起。我想把每个厕所都贴上“节约用水”的字条,这样就可以提醒同学们节约用水了。小记者:你们谈得很好,我的收获也很大。我还有新任务先走了,同学们再见!水跑上来说:同学们,今天我很高兴,我“水伯伯”今天很开心,你们知道了有了我就有了生命的源泉,请你们今后一定节约用水呀!让人类和动物、植物共存,迎接美好的明天!主持人:你们还有发言的吗?答:有。生:我代表人们谢谢你,水伯伯,节约用水就等于保护我们人类自己。动物:小熊上场说:我代表动物家族谢谢你了,我们也会保护你的!花草树木跑上场说:我们也不会忘记你的贡献!水伯伯:(手舞足蹈地跳起了舞蹈)同学们的笑声不断。主持人:

22、水伯伯,您这是干什么呢?水伯伯:因为我太高兴了,今后还请你们多关照我呀!主持人:水伯伯,请放心,今后我们一定会做得更好!再见!4.主持人:大家欢迎老师讲话!同学们,今天我们召开的班会非常生动,非常有意义。水是生命之源,无比珍贵,愿同学们能加倍珍惜它,做到节约一滴水,造福子孙后代。5.主持人宣布:“水”是万物之源主题班会到此结束。 6.活动效果: 此次活动使学生明白了节约用水的道理,浪费水的现象减少了,宣传节约用水的人增多了,人人争做节水小标兵活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。活动过程:1.主持人上场,神秘地说:“

23、我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语:“双手抓不起,一刀劈不开,煮饭和洗衣,都要请它来。”主持人问:“谁知道这是什么?”生答:“水!”一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?”主持人:我宣布:“水”是万物之源主题班会现在开始。 水说:“同学们,你们知道我有多重要吗?”齐答:“知道。”甲:如果没有水,我们人类就无法生存。小熊说:我们动物可喜欢你了,没有水我们会死掉的。花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。主持人:下面请听快板水的用处真叫大竹板一敲来说话,水的用处真叫大;洗衣服

24、,洗碗筷,洗脸洗手又洗脚,煮饭洗菜又沏茶,生活处处离不开它。栽小树,种庄稼,农民伯伯把它夸;鱼儿河马大对虾,日日夜夜不离它;采煤发电要靠它,京城美化更要它。主持人:同学们,听完了这个快板,你们说水的用处大不大?甲说:看了他们的快板表演,我知道日常生活种离不了水。乙说:看了表演后,我知道水对庄稼、植物是非常重要的。丙说:我还知道水对美化城市起很大作用。2.主持人:水有这么多用处,你们该怎样做呢?(1)(生):我要节约用水,保护水源。(2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。(3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同

25、学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。(4)(生):我要用洗脚水冲厕所。3.主持人:大家谈得都很好,下面谁想出题考考大家,答对了请给点掌声。(1)(生):小明让爸爸刷车时把水龙头开小点,请回答对不对。(2)(生):小兰告诉奶奶把洗菜水别到掉,留冲厕所用。(3)一生跑上说:主持人请把手机借我用用好吗?我想现在就给姥姥打个电话,告诉她做饭时别把淘米水到掉了,用它冲厕所或浇花用。(电话内容略写)(4)一生说:主持人我们想给大家表演一个小品行吗?主持人:可以,大家欢迎!请看小品这又不是我家的大概意思是:学校男厕所便池堵了,水龙头又大开,水流满地。学生甲乙丙三人分别上厕所,看见后又皱眉又骂,但都没有关水管,嘴里还念念有词,又说:“反正不是我家的。”旁白:“那又是谁家的呢?”主持人:看完这个小品,你们有什么想法吗?谁愿意给大家说说?

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁