《高中数学必修二示范教案(直线与圆的位置关系)教案课时训练练习教案课件.doc》由会员分享,可在线阅读,更多相关《高中数学必修二示范教案(直线与圆的位置关系)教案课时训练练习教案课件.doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、4.2 直线、圆的位置关系4.2.1 直线与圆的位置关系整体设计教学分析 学生在初中的学习中已了解直线与圆的位置关系,并知道可以利用直线与圆的交点的个数以及圆心与直线的距离d与半径r的关系判断直线与圆的位置关系,但是,在初中学习时,利用圆心与直线的距离d与半径r的关系判断直线与圆的位置关系的方法却以结论性的形式呈现.在高一学习了解析几何以后,要考虑的问题是如何掌握由直线和圆的方程判断直线与圆的位置关系的方法.解决问题的方法主要是几何法和代数法.其中几何法应该是在初中学习的基础上,结合高中所学的点到直线的距离公式求出圆心与直线的距离d后,比较与半径r的关系从而作出判断.适可而止地引进用联立方程组
2、转化为二次方程判别根的“纯代数判别法”,并与“几何法”欣赏比较,以决优劣,从而也深化了基本的“几何法”.含参数的问题、简单的弦的问题、切线问题等综合问题作为进一步的拓展提高或综合应用,也适度地引入课堂教学中,但以深化“判定直线与圆的位置关系”为目的,要控制难度.虽然学生学习解析几何了,但把几何问题代数化无论是思维习惯还是具体转化方法,学生仍是似懂非懂,因此应不断强化,逐渐内化为学生的习惯和基本素质.三维目标1.理解直线与圆的位置关系,明确直线与圆的三种位置关系的判定方法,培养学生数形结合的数学思想.2.会用点到直线的距离来判断直线与圆的位置关系及会利用直线与圆的位置关系解决相关的问题,让学生通
3、过观察图形,明确数与形的统一性和联系性.重点难点教学重点:直线与圆的位置关系的几何图形及其判断方法.教学难点:用坐标法判断直线与圆的位置关系.课时安排2课时教学过程第1课时导入新课思路1.平面解析几何是高考的重点和热点内容,每年的高考试题中有选择题、填空题和解答题,考查的知识点有直线方程和圆的方程的建立、直线与圆的位置关系等,本节主要学习直线与圆的关系.思路2.(复习导入)(1)直线方程Ax+By+C=0(A,B不同时为零).(2)圆的标准方程(x-a)2+(y-b)2=r2,圆心为(a,b),半径为r.(3)圆的一般方程x2+y2+Dx+Ey+F=0(其中D2+E2-4F0),圆心为(-,-
4、),半径为.推进新课新知探究提出问题初中学过的平面几何中,直线与圆的位置关系有几类?在初中,我们怎样判断直线与圆的位置关系呢?如何用直线与圆的方程判断它们之间的位置关系呢?判断直线与圆的位置关系有几种方法?它们的特点是什么?讨论结果:初中学过的平面几何中,直线与圆的位置关系有直线与圆相离、直线与圆相切、直线与圆相交三种.直线与圆的三种位置关系的含义是:直线与圆的位置关系公共点个数圆心到直线的距离d与半径r的关系图形相交两个dr相切只有一个d=r相离没有dr方法一,判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置
5、关系.直线与圆的位置关系的判断方法:几何方法步骤:1把直线方程化为一般式,求出圆心和半径.2利用点到直线的距离公式求圆心到直线的距离.3作判断:当dr时,直线与圆相离;当d=r时,直线与圆相切;当dr时,直线与圆相交.代数方法步骤:1将直线方程与圆的方程联立成方程组.2利用消元法,得到关于另一个元的一元二次方程.3求出其判别式的值.4比较与0的大小关系,若0,则直线与圆相离;若=0,则直线与圆相切;若0,则直线与圆相交.反之也成立.应用示例思路1例1 已知直线l:3x+y-6=0和圆心为C的圆x2+y2-2y-4=0,判断直线l与圆的位置关系.如果相交,求出它们的交点坐标.活动:学生思考或交流
6、,回顾判断的方法与步骤,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价;方法一,判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.解法一:由直线l与圆的方程,得消去y,得x2-3x+2=0,因为=(-3)2-412=10,所以直线l与圆相交,有两个公共点.解法二:圆x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心C的坐标为(0,1),半径长为,圆心C到直线l的距离d=.所以直线l与圆相交,有两个公共点.由x2-3x+2=0,得x1=2,x2=1.把x1=2代入方程,得y1=0;把x
7、2=1代入方程,得y2=3.所以直线l与圆相交有两个公共点,它们的坐标分别是(2,0)和(1,3).点评:比较两种解法,我们可以看出,几何法判断要比代数法判断快得多,但是若要求交点,仍需联立方程组求解.例2 已知圆的方程是x2+y2=2,直线y=x+b,当b为何值时,圆与直线有两个公共点,只有一个公共点没有公共点.活动:学生思考或交流,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价.我们知道,判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解,或依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.反过来,当已知圆与直线的位置关系时,也可求字母的取值范围,所求
8、曲线公共点问题可转化为b为何值时,方程组有两组不同实数根、有两组相同实根、无实根的问题.圆与直线有两个公共点、只有一个公共点、没有公共点的问题,可转化为b为何值时圆心到直线的距离小于半径、等于半径、大于半径的问题.解法一:若直线l:y=x+b和圆x2+y2=2有两个公共点、只有一个公共点、没有公共点,则方程组有两个不同解、有两个相同解、没有实数解,消去y,得2x2+2bx+b2-2=0,所以=(2b)2-42(b2-2)=16-4b2.所以,当=16-4b20,即-2b2时,圆与直线有两个公共点;当=16-4b2=0,即b=2时,圆与直线只有一个公共点;当=16-4b20,即b2或b-2时,圆
9、与直线没有公共点.解法二:圆x2+y2=2的圆心C的坐标为(0,0),半径长为2,圆心C到直线l:y=x+b的距离d=.当dr时,即,即|b|2,即b2或b-2时,圆与直线没有公共点;当d=r时,即=,即|b|=2,即b=2时,圆与直线只有一个公共点;当dr时,即,即|b|2,即-2b2时,圆与直线有两个公共点.点评:由于圆的特殊性,判断圆与直线的位置关系,多采用圆心到直线的距离与半径的大小进行比较的方法,而以后我们将要学习的圆锥曲线与直线位置关系的判断,则需要利用方程组解的个数来判断.变式训练 已知直线l过点P(4,0),且与圆O:x2+y2=8相交,求直线l的倾斜角的取值范围.解法一:设直
10、线l的方程为y=k(x-4),即kx-y-4k=0,因为直线l与圆O相交,所以圆心O到直线l的距离小于半径,即2,化简得k21,所以-1k1,即-1tan1.当0tan1时,0;当-1tan0时,.所以的取值范围是0,)(,).解法二:设直线l的方程为y=k(x-4),由,消去y得(k2+1)x2-8k2x+16k2-8=0.因为直线l与圆O相交,所以=(-8k2)2-4(k2+1)(16k2-8)0,化简得k21.(以下同解法一)点评:涉及直线与圆的位置关系的问题,常可运用以上两种方法.本题若改为选择题或填空题,也可利用图形直接得到答案.思路2例1 已知圆的方程是x2+y2=r2,求经过圆上
11、一点M(x0,y0)的切线方程.活动:学生思考讨论,教师提示学生解题的思路,引导学生回顾直线方程的求法,既考虑通法又考虑图形的几何性质.此切线过点(x0,y0),要确定其方程,只需求出其斜率k,可利用待定系数法(或直接求解).直线与圆相切的几何特征是圆心到切线的距离等于圆的半径,切线与法线垂直.解法一:当点M不在坐标轴上时,设切线的斜率为k,半径OM的斜率为k1,因为圆的切线垂直于过切点的半径,所以k=-.因为k1=所以k=-.所以经过点M的切线方程是y-y0=-(x-x0).整理得x0x+y0y=x02+y02.又因为点M(x0,y0)在圆上,所以x02+y02=r2.所以所求的切线方程是x
12、0x+y0y=r2.当点M在坐标轴上时,可以验证上面的方程同样适用.解法二:设P(x,y)为所求切线上的任意一点,当P与M不重合时,OPM为直角三角形,OP为斜边,所以OP2=OM2+MP2,即x2+y2=x02+y02+(x-x0)2+(y-y0)2.整理得x0x+y0y=r2.可以验证,当P与M重合时同样适合上式,故所求的切线方程是x0x+y0y=r2.解法三:设P(x,y)为所求切线上的任意一点,当点M不在坐标轴上时,由OMMP得kOMkMP=-1,即=-1,整理得x0x+y0y=r2.可以验证,当点M在坐标轴上时,P与M重合,同样适合上式,故所求的切线方程是x0x+y0y=r2.点评:
13、如果已知圆上一点的坐标,我们可直接利用上述方程写出过这一点的切线方程.变式训练 求过圆C:(x-a)2+(y-b)2=r2上一点M(x0,y0)的圆的切线方程.解:设x0a,y0b,所求切线斜率为k,则由圆的切线垂直于过切点的半径,得k=,所以所求方程为y-y0=(x-x0),即(y-b)(y0-b)+(x-a)(x0-a)=(x0-a)2+(y0-b)2.又点M(x0,y0)在圆上,则有(x0-a)2+(y0-b)2=r2.代入上式,得(y-b)(y0-b)+(x-a)(x0-a)=r2.当x0=a,y0=b时仍然成立,所以过圆C:(x-a)2+(y-b)2=r2上一点M(x0,y0)的圆的
14、切线方程为(y-b)(y0-b)+(x-a)(x0-a)=r2.例2 从点P(4,5)向圆(x2)2y2=4引切线,求切线方程.活动:学生思考交流,提出解题的方法,回想直线方程的求法,先验证点与圆的位置关系,再利用几何性质解题.解:把点P(4,5)代入(x2)2y2=4,得(42)252=294,所以点P在圆(x2)2y2=4外.设切线斜率为k,则切线方程为y5=k(x4),即kxy54k=0.又圆心坐标为(2,0),r=2.因为圆心到切线的距离等于半径,即=2,k=.所以切线方程为21x20y16=0.当直线的斜率不存在时还有一条切线是x=4.点评:过圆外已知点P(x,y)的圆的切线必有两条
15、,一般可设切线斜率为k,写出点斜式方程,再利用圆心到切线的距离等于半径,写出有关k的方程.求出k,因为有两条,所以应有两个不同的k值,当求得的k值只有一个时,说明有一条切线斜率不存在,即为垂直于x轴的直线,所以补上一条切线x=x1.变式训练 求过点M(3,1),且与圆(x-1)2+y2=4相切的直线l的方程.解:设切线方程为y-1=k(x-3),即kx-y-3k+1=0,因为圆心(1,0)到切线l的距离等于半径2,所以=2,解得k=-.所以切线方程为y-1=-(x-3),即3x+4y-13=0.当过点M的直线的斜率不存在时,其方程为x=3,圆心(1,0)到此直线的距离等于半径2,故直线x=3也
16、符合题意.所以直线l的方程是3x+4y-12=0或x=3.例3 (1)已知直线l:y=x+b与曲线C:y=有两个不同的公共点,求实数b的取值范围;(2)若关于x的不等式x+b解集为R,求实数b的取值范围.图1解:(1)如图1(数形结合),方程y=x+b表示斜率为1,在y轴上截距为b的直线l;方程y=表示单位圆在x轴上及其上方的半圆,当直线过B点时,它与半圆交于两点,此时b=1,直线记为l1;当直线与半圆相切时,b=,直线记为l2.直线l要与半圆有两个不同的公共点,必须满足l在l1与l2之间(包括l1但不包括l2),所以1b,即所求的b的取值范围是1,).(2)不等式x+b恒成立,即半圆y=在直
17、线y=x+b上方,当直线l过点(1,0)时,b=-1,所以所求的b的取值范围是(-,-1).点评:利用数形结合解题,有时非常方便直观.知能训练本节练习2、3、4.拓展提升圆x2+y2=8内有一点P0(-1,2),AB为过点P0且倾斜角为的弦.(1)当=时,求AB的长;(2)当AB的长最短时,求直线AB的方程.解:(1)当=时,直线AB的斜率为k=tan=-1,所以直线AB的方程为y-2=-(x+1),即y=-x+1.解法一:(用弦长公式)由消去y,得2x2-2x-7=0,设A(x1,y1),B(x2,y2),则x1+x2=1,x1x2=-,所以|AB|=|x1-x2|=.解法二:(几何法)弦心
18、距d=,半径r=2,弦长|AB|=2.(2)当AB的长最短时,OP0AB,因为kOP0=-2,kAB=,直线AB的方程为y-2=(x+1),即x-2y+5=0.课堂小结(1)判断直线与圆的位置关系的方法:几何法和代数法.(2)求切线方程.作业习题4.2 A组1、2、3.设计感想本节课是在学习了点和圆的位置关系的基础上进行的,是为后面的圆与圆的位置关系作铺垫的一节课.本节的主题是直线和圆,在解析几何中,直线与圆的关系是一个非常重要的知识点,可以对学生的思维有一个很好的锻炼,将几种重要的数学思想灌输给学生.首先,一开始的复习提问全面又突出重点,特别是“初中学习的如何判断直线和圆的位置关系?”这个问
19、题,为学生思考提供了很好的引导.其次对于例题的选择有很高的要求,好的例题是一个好教案的重要保证.在例题的设计方面,本教案共分为三个层次来一步步的推进,让学生由浅入深,从思维容量上层层递进,对学生的思考和分析都有很好的引导作用,通过思路1的例题1、2对直线与圆的几种位置关系作了巩固,是每个学生都必须也能够掌握的.但这几题虽是基础题也并不是平淡无奇的题,它印证了判定的条件和结论在一定条件下是可以转化的.通过思路2的例题1、2,对圆的切线方程的求法进行了说明和总结.这个知识点与“直线与圆”联系起来,而且同时又渗透了数形结合的思想.让学生通过具体的练习,通过自主地思考、研究,来体会数学思想对我们解题和
20、研究的作用.例题3的设计给学生留下了讨论的空间,不仅将与直线与圆有关的各知识点联系了起来,而且还通过各知识点之间的联系、综合应用,组织学生一起思考起来,对应用的加强更是体现了“分类活动,激发潜能”的基本要求.下课啦,咱们来听个小故事吧:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。活动过程:1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语:“双手抓不起,一刀劈不开,煮饭和洗衣,都要请它来。”主持人问:“谁知道这是什么?”生答:“水!”一生戴上水的头饰上场说:“我就是同学们猜到的水
21、。听大家说,我的用处可大了,是真的吗?”主持人:我宣布:“水”是万物之源主题班会现在开始。 水说:“同学们,你们知道我有多重要吗?”齐答:“知道。”甲:如果没有水,我们人类就无法生存。小熊说:我们动物可喜欢你了,没有水我们会死掉的。花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。主持人:下面请听快板水的用处真叫大竹板一敲来说话,水的用处真叫大;洗衣服,洗碗筷,洗脸洗手又洗脚,煮饭洗菜又沏茶,生活处处离不开它。栽小树,种庄稼,农民伯伯把它夸;鱼儿河马大对虾,日日夜夜不离它;采煤发电要靠它,京城美化更要它。主持人:同学们,听完了这个快板,你们说水的用处大不大?
22、甲说:看了他们的快板表演,我知道日常生活种离不了水。乙说:看了表演后,我知道水对庄稼、植物是非常重要的。丙说:我还知道水对美化城市起很大作用。2.主持人:水有这么多用处,你们该怎样做呢?(1)(生):我要节约用水,保护水源。(2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。(3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。(4)(生):我要用洗脚水冲厕所。3.主持人:大家谈得都很好,下面谁想出题考考大家,答对了请给点掌声。(1)(生):小明让爸爸刷车时把水龙头开小
23、点,请回答对不对。(2)(生):小兰告诉奶奶把洗菜水别到掉,留冲厕所用。(3)一生跑上说:主持人请把手机借我用用好吗?我想现在就给姥姥打个电话,告诉她做饭时别把淘米水到掉了,用它冲厕所或浇花用。(电话内容略写)(4)一生说:主持人我们想给大家表演一个小品行吗?主持人:可以,大家欢迎!请看小品这又不是我家的大概意思是:学校男厕所便池堵了,水龙头又大开,水流满地。学生甲乙丙三人分别上厕所,看见后又皱眉又骂,但都没有关水管,嘴里还念念有词,又说:“反正不是我家的。”旁白:“那又是谁家的呢?”主持人:看完这个小品,你们有什么想法吗?谁愿意给大家说说?甲:刚才三个同学太自私了,公家的水也是大家的,流掉了
24、多可惜,应该把水龙头关上。乙:上次我去厕所看见水龙头没关就主动关上了。主持人:我们给他鼓鼓掌,今后你们发现水龙头没关会怎样做呢?齐:主动关好。小记者:同学们,你们好!我想打扰一下,听说你们正在开班会,我想采访一下,行吗?主持人:可以。小记者:这位同学,你好!通过参加今天的班会你有什么想法,请谈谈好吗?答:我要做节水的主人,不浪费一滴水。小记者:请这位同学谈谈好吗?答:今天参加班会我知道了节约每一滴水要从我们每个人做起。我想把每个厕所都贴上“节约用水”的字条,这样就可以提醒同学们节约用水了。小记者:你们谈得很好,我的收获也很大。我还有新任务先走了,同学们再见!水跑上来说:同学们,今天我很高兴,我
25、“水伯伯”今天很开心,你们知道了有了我就有了生命的源泉,请你们今后一定节约用水呀!让人类和动物、植物共存,迎接美好的明天!主持人:你们还有发言的吗?答:有。生:我代表人们谢谢你,水伯伯,节约用水就等于保护我们人类自己。动物:小熊上场说:我代表动物家族谢谢你了,我们也会保护你的!花草树木跑上场说:我们也不会忘记你的贡献!水伯伯:(手舞足蹈地跳起了舞蹈)同学们的笑声不断。主持人:水伯伯,您这是干什么呢?水伯伯:因为我太高兴了,今后还请你们多关照我呀!主持人:水伯伯,请放心,今后我们一定会做得更好!再见!4.主持人:大家欢迎老师讲话!同学们,今天我们召开的班会非常生动,非常有意义。水是生命之源,无比
26、珍贵,愿同学们能加倍珍惜它,做到节约一滴水,造福子孙后代。5.主持人宣布:“水”是万物之源主题班会到此结束。 6.活动效果: 此次活动使学生明白了节约用水的道理,浪费水的现象减少了,宣传节约用水的人增多了,人人争做节水小标兵活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。活动过程:1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语:“双手抓不起,一刀劈不开,煮饭和洗衣,都要请它来。”主持人问:“谁知道这是什么?”生答:“水!”一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,
27、我的用处可大了,是真的吗?”主持人:我宣布:“水”是万物之源主题班会现在开始。 水说:“同学们,你们知道我有多重要吗?”齐答:“知道。”甲:如果没有水,我们人类就无法生存。小熊说:我们动物可喜欢你了,没有水我们会死掉的。花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。主持人:下面请听快板水的用处真叫大竹板一敲来说话,水的用处真叫大;洗衣服,洗碗筷,洗脸洗手又洗脚,煮饭洗菜又沏茶,生活处处离不开它。栽小树,种庄稼,农民伯伯把它夸;鱼儿河马大对虾,日日夜夜不离它;采煤发电要靠它,京城美化更要它。主持人:同学们,听完了这个快板,你们说水的用处大不大?甲说:看了他
28、们的快板表演,我知道日常生活种离不了水。乙说:看了表演后,我知道水对庄稼、植物是非常重要的。丙说:我还知道水对美化城市起很大作用。2.主持人:水有这么多用处,你们该怎样做呢?(1)(生):我要节约用水,保护水源。(2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。(3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。(4)(生):我要用洗脚水冲厕所。3.主持人:大家谈得都很好,下面谁想出题考考大家,答对了请给点掌声。(1)(生):小明让爸爸刷车时把水龙头开小点,请回答对不对。(2)(生):小兰告诉奶奶把洗菜水别到掉,留冲厕所用。(3)一生跑上说:主持人请把手机借我用用好吗?我想现在就给姥姥打个电话,告诉她做饭时别把淘米水到掉了,用它冲厕所或浇花用。(电话内容略写)(4)一生说:主持人我们想给大家表演一个小品行吗?主持人:可以,大家欢迎!请看小品这又不是我家的大概意思是:学校男厕所便池堵了,水龙头又大开,水流满地。学生甲乙丙三人分别上厕所,看见后又皱眉又骂,但都没有关水管,嘴里还念念有词,又说:“反正不是我家的。”旁白:“那又是谁家的呢?”主持人:看完这个小品,你们有什么想法吗?谁愿意给大家说说?