《初三上册数学教学计划集锦8篇.docx》由会员分享,可在线阅读,更多相关《初三上册数学教学计划集锦8篇.docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初三上册数学教学计划集锦8篇初三上册数学教学计划集锦8篇 时光飞逝,时间在慢慢推演,我们迎来了新的学习生活,做好教学计划,让自己成为更有竞争力的人吧。相信大家又在为写教学计划犯愁了吧,下面是小编为大家整理的初三上册数学教学计划8篇,仅供参考,欢迎大家阅读。 初三上册数学教学计划篇1 九年级数学教学计划上册初三学年下学期的复习教学,是整合升华学科知识,培养提高应试能力的重要环节。复习教学工作的好坏,直接关系到中考的成功与否。为保障毕业班复习教学取得良好成效, 以科学发展观为指导,以复习课型模式研究,提高课堂效益为重点,面向全体学生,优生优培,中程生提高,困难生稳中求进;依纲据本,抓住重点,突破难
2、点,强化薄弱环节;加强教情,学情研究,强化中考的研究,大面积提高教学成绩,促进初三复习教学工作又好又快发展。 1,提高认识,全力以赴,进入冲刺状态 首先,每位初三教师要充分认识复习教学的重要性,增强责任重于泰山,质量压倒一切的责任感,树立认真就是水平,负责就是能力的观念,发扬关键时刻冲得上豁得出的拼搏精神,全力以赴,聚精会神,专心致志,真真正正进入冲刺状态,苦战100天,用成绩说话,坚决夺取今年中考的全面胜利。其次,全体教师要以毕业班工作的大局为重,服从安排,听从指挥,不管是级部的安排,还是各备课组的布置,都要扎扎实实贯彻执行,将落实进行到底。纪律严明,政令畅通,是工作胜利的保障。要彻底杜绝有
3、令不行,有禁不止的以自我为中心的个人主义的不良作风。第三,全体教师要增强精诚合作的团队意识,实实在在搞好团结。团结出力量,团结出成绩。在初三这个集体内坚决反对那种意气用事,挑拨离间的行为。有意见,有矛盾当面说开,大事讲原则,小事讲风格;有困难,有问题,大家齐帮助,共协商,形成一个和谐,融洽的工作氛围。 2,周密计划,科学安排 各学科现已完成教学进度,学期开始即转入总复习阶段。总体时间安排是3月上旬4月中旬45天左右为第一轮复习,以课本知识的疏理,归纳,总结为主;备课组自编讲学稿一套。4月下旬5月中旬30天左右,以课外拓展为主,以专题复习为主。5月下旬6月中考前,主要是整合升华阶段,综合模拟为主
4、,训练应试能力与技巧。 三轮复习的具体思路是: 一轮复习本着全面,扎实,系统,灵活的指导思想,一是做到四个坚持,即:坚持把复习的重点放在基础知识上;坚持补弱纠偏,重在一轮;坚持改进课堂教学,提高复习效率;坚持面向全体,实现大面积丰收。二是落实四个为主,即以基础知识的复习为主,以低中档题目的训练为主,以学科内综合为主,以小综合训练为主。三是处理好三个关系,即:基础和能力的关系(强化基础,提升能力),扬长与补弱的关系,复习知识与做题的关系(做题的目的是回扣知识提升能力)。四是确保两项常规的落实,即教师的教学常规和学生学习常规的落实。 二轮复习本着巩固,完善,综合,提高的指导思想,采取专题复习加综合
5、训练的复习模式,突出五个强化,即强化时间观念;强化研究:重点研究两纲(教学大纲和考试说明),两题(综合题和能力题),两课(复习课和讲评课),两生(优生和困难生),两法(教学方法和学习方法),两情(教情和学情);强化训练:立足三个讲好,增强五个针对性。三个讲好:讲好专题,讲好试卷,讲好练习;五个针对性:针对目标生讲,针对中考新模式指向讲,针对二轮复习能力要求讲,针对反馈的问题讲,针对典型题目讲;强化应试技巧与规范化,最大限度降低非知识性丢分;强化学生心理调控,加强心理辅导,使学生以一种积极的心态复习,以必胜的信念参加中考。 三轮复习以回扣,模拟,完善,调整为指导思想。抓回扣做到四化要求,即:回扣
6、教材提纲化,回扣基础系统化,回扣形式习题化,回扣时间具体化;抓模拟做到四性要求,即试题体现基础性,考试体现模拟性,答题体现规范性,讲解体现系统性。逐步达到完善知识体系,适应考试要求,调整教与学的方向,升华应试技能的目的。 3,细致研究教材,考试说明,中考试题,做到有的放矢。 各任课教师要加强对初中学段本学科教材的通研。教材是中考命题的依托,一方面要熟悉教材的整体编排体系,编写体例,重点难点,另一方面又要熟悉每个单元的教学目标,知识结构,知识点和能力训练点,教法和学法等。要在通研教材的基础上,把教材重新划分若干个大单元,以利系统复习。 4,组织好大型考试,搞好质量分析 级部组织的综合拉练,模拟考
7、试,要做到考务严密,分析透彻,补漏措施具体,使每一次考试成为学生学习的加油站,教师教学的里程碑,教学质量的大会诊。 5,重视非智力因素培养,加强学法指导 全体教师要从只重视学生的智力因素转移到重视智力因素与非智力因素协调发展上来,特别应突出对学生学习兴趣与动力激发,学习习惯与品质养成,理想教育与成功教育等方面的研究和强化。各任课教师要系统有序地教给学生本学科的学习方法,并注意跟上个别指导。班主任要利用一定时间,如每次考试后安排23名学生现身说法,介绍学习方法和学习经验。对学生授之以渔而非授之以鱼,可起到事半功倍之成效。 6,因材施教,加强学生的分层次教育。 首先,切实贯彻优生优培,中间生提高,
8、困难生稳中求进的原则。全体教师要增强优生优培意识,调整优生优培策略,要特别关注各班第一名,将其作为重点中的重点悉心培养。对本班前10名的学生要重点培养,增加升入重点高中的数量,提高本班优秀率。各科教师要注意中程生的各科平衡发展,尤其是加强中程生薄弱学科的特殊对待,在课堂提问,试卷批阅等环节要注意对中程生倾斜,使其尽快优化,以提高平均分,增加其升入高中的机会。对学习困难生,更要多一份耐心,要想方设法鼓舞其信心,利用复习的机会掌握一些基本知识,提高平均分,顺利完成学业,以此提升平均分。 7,落实备考的关键环节 (1)是要把好集体备课关。继续加大落实集体备课力度,要求备课组长分好工,每人重点备某一部
9、分,选好该部分的练习题,然后主备人利用教研活动时间主讲,其他教师补充,提出建议,最后确定教案。 (2)是要把好材料关。初三复习过程中学生所用的复习材料必须经过各备课组长以及各任课教师严格筛选,不经过集体研究的练习题决不发给学生。在选题时要按考点进行梳理,按中考能力的要求选题,题型,题量要尽量安排得全面,条理,有序,所选题目要尽量联系生活实际,贴近中考,体现新情景,新材料,便于训练利用已有知识解决新问题的能力。控制所选题目的难度,以中,低档难度题目为主,少选难题,杜绝偏题怪题。 (3)是要把好阅批统计关。凡定时作业,练习,测试,必须有布置,有检查,认真批改,有查必评,有错必纠。杜绝练习,试题不批
10、阅,不统计,凭感觉讲评的现象。 (4)是要把好讲评关。根据批阅统计情况,有的放矢进行讲评,要讲学生所需,切忌面面俱到。要求学生多用启发式,讨论式,引导学生总结出规律和方法。要做到讲一题会一类,举一反 (5)切忌就题论题。 (6)是要把握好学生落实关。学生是否能够复习好,落实是关键。要留给学生自我反思,整改,消化的时间,要求学生从第一次拉练起,建立错题本,查失分,写考情分析,确立新目标,老师要做到跟踪检查,让部分学生二次过关。 教学措施 实行分轮复习 第一轮重点复习巩固基础知识,以课本基本知识为依据,列出每章的知识网络,有利于学生对知识掌握的系统化,以训练基本技能为主的试题辅以练习,强化训练,加
11、深印象。第二轮复习在第一轮分项复习的基础上,进行综合类型题的复习,包括几何应用,代数应用,几何综合,代数综合等方面的综合练习。第三轮主要是做中考模拟试题,让学生熟悉考试类型题,同时提高学生应试的心理素质。最后阶段,根据学生对知识掌握的程度,查漏补缺,因材施教。 教学基本用书 (一)本学期的教学用书参考初中数学教与学,浙江中考,三年中考优化试卷。 (二)自编讲学稿一套。 时间安排 2月26日2月28日第二章简单事件的概率 3月1日3月9日第四章投影与三视图 3月10日4月中旬复习基础知识 4月中旬5月上旬分项训练 5月上旬5月底综合训练做模拟试题 5月底到最后根据情况查漏补缺。 初三上册数学教学
12、计划篇2 一、基本情况: 本学期是初中学习的关键时期本学期我担任初三年级三(5、6)两个班的数学教学工作,是新课程标准实验教材,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中的创新意识、引导学生进行思考问题方式都必须不同与以往的教学。因此,在完成教学任务的同时,必须尽可能性的创设情景,让学生经历探索、猜想、发现的过程。并结合教学内容和学生实际,把握好重点、难点。树立素质教育观念,以培养全面发展的高素质人才为目标,面向全体学生,使学生在德、智、体、美、劳等诸方面都得到发展。为做好本学期的教育教学工作,特制定本计划。 二、指导思想: 初三数学是以党和国家的教育教学
13、方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。 三、教学内容: 本学期所教初三数学包括第一章证明(二),第二章一元二次方程,第三章证明(三),第四章视图与投影,第五章反比例函数,第六章频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数这两章是与数及数
14、的运用有关的。频率与概率则是与统计有关。 四、教学目的: 在新课方面通过讲授证明(二)和证明(三)的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在视图与投影这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在频率与概率这一章让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。 在一元二次方程和反比例函数这两章,让学生了解一元
15、二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。 五、教学重点、难点 本册教材包括几几何何部分证明(二),证明(三),视图与投影。代娄部分一元二次方程,反比例函数。以及与统计有关的频率与概率。证明(二),证明(三)的重点是 1、要求学生掌握证明的基本要求和方法,学会推理论证; 2、探索证明的思路和方法,提倡证明的多样性。 难点是 1、引导学生探索、猜测、证明,体会证明的必要性; 2、在教学中渗透如归纳、类比、转化等数学思想。视图与投影和重点是通过学习和实践活动
16、判断简单物体的三种视图,并能根据三种图形描述基本几何体或实物原型,实现简单物体与其视图之间的相互转化。难点是理解平行投影与中心投影,明确视点、视线和盲区的内容。 一元二次方程,反比例函数的重点是 1、掌握一元二次方程的多种解法; 2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的性质。难占是1、会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。频率与概率的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,
17、必须借助于大量重复试验,从而提示概率与统计之间的内存联系。 六、教学措施: 针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施: 1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。 2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。 3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。 4、新课教学中涉及到旧知识时,对其作相应的复习回顾。 5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。 七、教学进度: 除了以上计划外,我还将预计开展转化个别后进生工作,教学中注重数学理论与社会
18、实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力,重视实习作业。 初三上册数学教学计划篇3 1.了解整式方程和一元二次方程的概念。 2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。 3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。 重点:一元二次方程的概念和它的一般形式。 难点:对一元二次方程的一般形式的正确理解及其各项系数的确定 一、 知识回顾 1.什么是整式方程?_什么是-元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方
19、程叫做整式方程。就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程. 2、指出下列方程那些是一元二次方程:那些是一元一次方程? (1)3x十2=5x-3 (2)x2=4 (3)(x十3)(3xo4)=(x十2)2; (4)(x-1)(x-2)=x2十8; 以上是一元二次方程的为:_以上是一元一次方程的为_ 二、 探究新知一 1.一元二次方程的一般形式是() 1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b0就
20、成了一元一次方程了) 2).方程中ax2、bx、c各项的名称及a、b的系数名称各是什么? 3).强调:一元二次方程的一般形式中=的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是=的右边必须整理成0. 探究新知(二) 1.说出下列一元二次方程的二次项系数、一次项系数、常数项: (1)x2十3x十2=O_ (2)x2-3x十4=0;_ (3)3x2-5=0_ (4)4x2十3x-2=0;_ (5)3x2-5=0;_ (6)6x2-x=0._ 2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项: (1)6x-2
21、=3-7x;(2)3x(x-1)=2(x十2)-4; (3)(3x十2)2=4(x-3)2 学以致用: 强化概念: 1.说出下列一元二次方程的二次项系数、一次项系数、常数项: (1)x2十3x十2=O_ (2)x2-3x十4=0;_ (3)3x2-5=0_ (4)4x2十3x-2=0;_ (5)3x2-5=0_ (6)6x2-x=0_ 2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项: (1)6x2=3-7x (2)3x(x-1)=2(x十2)-4 (3)(3x十2)2=4(x-3)2 知识总结: (1)什么是一元二次方程?是一元二次方程满足哪几个条件? (
22、2)要知道一元二次方程的一般形式ax2十bx十c=0(a0)并且注意一元二次方程的一般形式中=的左边最多几项、其中()可以不出现、但()必须存在。特别注意的是=的右边必须整理成(); (3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.如:(3x十2)2=4(x-3)_ 诊断检测题一: 1.一元二次方程的一般形式是_,其中_是二次项,_是一次项,_是常数项. 2.方程(3x-7)(2x+4)=4化为一般形式为_,其中二次项系数为_,一次项系数为_. 3.方程mx2+5x+n=0一定是(). A.一元二次方程B.一元一次方程 C.整式方程D.关于x的一元二
23、次方程 4.关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值范围是() A.任意实数B.m-1C.m1D.m0 5.方程:3X-1=0;3X2-1=0;2X2-1=(X-1)(X-2); 3X2+Y=2X那些是一元二次方程? 6.把下列方程化成一般形式,且指出其二次项,一次项和常数项 (1)2x(x-5)=3-x(2)(2x-1)(x+5)=6x 诊断检测题二: 1.方程的二次项系数是,一次项系数是,常数项是. 2.把一元二次方程化成二次项系数大于零的一般式是,其中二次项系数是,一次项的系数是,常数项是; 3.一元二次方程的一个根是3,则; 4.是实数,且,则的值是. 5.
24、关于的方程是一元二次方程,则. 6.方程:中一元二次程是() A.和B.和C.和D.和 初三上册数学教学计划篇4 教学目标: 1.知识与技能: (1)能证明等腰梯形的性质和判定定理 (2)会利用这些定理计算和证明一些数学问题 2.过程与方法: 通过证明等腰梯形的性质和判定定理,体会数学中转化思想方法的应用。 3.情感态度与价值观: 通过定理的证明,体会证明方法的多样化,从而提高学生解决几何问题的能力。 重点、难点: 重点:等腰梯形的性质和判定 难点:如何应用等腰梯形的性质和判定解决具体问题。 教学过程 (一)知识梳理: 知识点1:等腰梯形的性质1 (1)文字语言:等腰梯形同一底上的两底角相等。
25、 (2)数学语言: 在梯形ABCD中 ADBC,AB=CD B=C A=D(等腰梯形同一底上的两个底角相等) (3)本定理的作用:在梯形中常用的添加辅助线平移腰,可以把梯形化归为一个平行四边形和一个等腰三角形;从而利用平行四边形及等腰三角形的有关性质解决有关问题。 知识点2:等腰梯形的性质2 (1)文字语言:等腰梯形的两条对角线相等 (2)数学语言: 在梯形ABCD中 ADBC,AB=DC AC=BD(等腰梯形对角线相等) (3)本定理的作用:利用等腰梯形的性质证明线段相等,以及平移其中一条对角线化梯形为一个平行四边形和一个等腰三角形从而解决有关线段的相等和垂直。 知识点3:等腰梯形的判定 (
26、1)文字语言:在同一底上的两个角相等的梯形是等腰梯形。 (2)数学语言:在梯形ABCD中B=C 梯形ABCD是等腰梯形(同底上的两个角相等的梯形是等腰梯形) (3)本定理的作用:在梯形中常用添加辅助线补全三角形把原来的梯形化为两个三角形 (4)说明: 判定一个梯形是等腰梯形通常有两种方法:定义法和定理法。 判定一个梯形是等腰梯形一般步骤:先判定四边形是梯形,然后再判定“两腰相等”或“同一底上的两个角相等”来判定它是等腰梯形。 例1.我们在研究等腰梯形时,常常通过作辅助线将等腰梯形转化为三角形,然后用三角形的知识来解决等腰梯形的问题。 (1)在下面4个等腰梯形中,分别作出常用的4种辅助线(作图工
27、具不限) (2)在(1)的条件下,若ACBD,DEBC于点E,试确定线段DE与AD,BC之间的数量关系。并证明你的结论。 解:(1)略。 (2)DE=(AD+BC) 过D作DFAC交BC延长线于点F ADBC,四边形ACFD是平行四边形 AD=CF,AC=DF AC=BD BD=DF 又ACBD,BDDF即BDF为等腰直角三角形 DEBF,则DE=BF, DE=(BC+CF)=(BC+AD) 例2.如图,铁路路基横断面为等腰梯形ABCD,已知路基AB长6m,斜坡BC与下底CD的夹角为60,路基高AE为,求下底CD的宽。 解:过点B作BFCD于F 四边形ABCD是等腰梯形 BC=AD BF=AE
28、,BFCD,AECD RtBCFRtADE 在RtBCF中,C=60 CBF=30 CF=BC即BC=2CF BC2=CF2+BF2 即CF=2 ABCD,BFCD,AECD 四边形ABFE是矩形 EF=AB=6m CD=DE+EF+CF=AB+2CF=6+22=10(m) 例3.已知如图,梯形ABCD中,ABDC,AD=DC=CB,AD、BC的延长线相交于G,CEAG于E,CFAB于F (1)请写出图中4组相等的线段。(已知的相等线段除外) (2)选择(1)中你所写的一组相等线段,说说它们相等的理由。 解:(1)DG=CG,DE=BF,CF=CE,AF=AE,AG=BG (2)证明AG=BG
29、,因为在梯形ABCD中, ABDC,AD=BC,所以梯形ABCD为等腰梯形 GAB=GBA AG=BG 课堂小结: 本节课的学习要注意转化的思想方法,有关等腰梯形的问题往往通过作辅助线将其转化为更特殊的四边形和三角形,常见办法是平移腰,延长腰,作高分割,平移对角线等方法。 初三上册数学教学计划篇5 教学目标 (1)会用公式法解一元二次方程; (2)经历求根公式的发现和探究过程,提高学生观察能力、分析能力以及逻辑思维能力; (3)渗透化归思想,领悟配方法,感受数学的内在美. 教学重点 知识层面:公式的推导和用公式法解一元二次方程; 能力层面:以求根公式的发现和探究为载体,渗透化归的数学思想方法.
30、 教学难点:求根公式的推导. 总体设计思路: 以旧知识为起点,问题为主线,以教师指导下学生自主探究为基本方式,突出数学知识的内在联系与探究知识的方法,发展学生的理性思维. 教学过程 (一)以旧引新,提出问题 解下列一元二次方程:(学生选两题做) (1)x2+4x+2=0;(2)3x2-6x+1=0; (3)4x2-16x+17=0;(4)3x2+4x+7=0. 然后让学生仔细观察四题的解答过程,由此发现有什么相同之处,有什么不同之处? 接着再改变上面每题的其中的一个系数,得到新的四个方程:(学生不做,思考其解题过程) (1)3x2+4x+2=0;(2)3x2-2x+1=0; (3)4x2-16
31、x-3=0;(4)3x2+x+7=0. 思考:新的四题与原题的解题过程会发生什么变化? 设计意图:1.复习巩固旧知识,为本节课的学习扫除障碍; 2.让学生充分感受到用配方法解题既存在着共性,也存在着不同的现象,由此激发学生的求知欲望. 3、学生根据自己的情况选两题,这样做能保证运算的正确和继续学习数学的信心。 (二)分析问题,探究本质 由学生的观察讨论得到:用配方法解不同一元二次方程的过程中,相同之处是配方的过程-程序化的操作,不同之处是方程的根的情况及其方程的根. 进而提出下面的问题: 既然过程是相同的,为什么会出现根的不同?方程的根与什么有关?有怎样的关系?如何进一步探究? 让学生讨论得出:从一元二次方程的一般形式去探究根与系数的关系. ax2+bx+c=0(a0)注:根据学生学习程度的不同,可 ax2+bx=-c以采用学生独立尝试配方,合 x2+x=-作尝试配方或教师引导下进行 x2+x+=-+配方等各种教学形式. (x+)2= 然后再议开方过程(让学生结合前面四题方程来加以讨论),使学生充分认识到“b2-4ac”的重要性. 当b2-4ac0时, (x+)2=注:这样变形可以避免对a正、负的讨论, x+=便于学生的理解. x=-即x= x1=,x2= 当b2-4ac21