2021_2021学年高中数学第1章计数原理1.2.2第2课时组合的综合应用作业含解析新人教A版选修2_.doc

上传人:知****量 文档编号:28269721 上传时间:2022-07-26 格式:DOC 页数:4 大小:143KB
返回 下载 相关 举报
2021_2021学年高中数学第1章计数原理1.2.2第2课时组合的综合应用作业含解析新人教A版选修2_.doc_第1页
第1页 / 共4页
2021_2021学年高中数学第1章计数原理1.2.2第2课时组合的综合应用作业含解析新人教A版选修2_.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《2021_2021学年高中数学第1章计数原理1.2.2第2课时组合的综合应用作业含解析新人教A版选修2_.doc》由会员分享,可在线阅读,更多相关《2021_2021学年高中数学第1章计数原理1.2.2第2课时组合的综合应用作业含解析新人教A版选修2_.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第一章1.21.2.2 第2课时【基础练习】1某大学开设A类选修课2门,B类选修课3门,一位同学从中选3门若要求两类课程中各至少选一门,则不同的选法共有()A3种B6种C9种D18种【答案】C2.(2019年四川模拟)从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,组成没有重复数字的五位数,则组成的五位数中偶数的个数为()A7200B2880C120D60【答案】B312名同学合影,站成了前排4人后排8人现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()ACABCA CCADCA【答案】C4.(2020年开封模拟)某地实行高考改革,考

2、生除参加语文、数学、英语统一考试外,还需从物理、化学、生物、政治、历史、地理六科中选考三科.学生甲要想报考某高校的法学专业,就必须要从物理、政治、历史三科中至少选考一科,则学生甲的选考方法种数为()A.6 B.12 C.19 D.20【答案】C【解析】从六科中选考三科的选法有C种,其中不选物理、政治、历史中任意一科的选法有1种,因此学生甲的选考方法共有C119种.5(2015年上海)在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为_(结果用数值表示)【答案】1206.(2019年常熟期中)某城市纵向有6条道路,横向有5条道路,构成如图所示的矩

3、形道路网(图中黑线表示道路),则从西南角A地到东北角B地的最短路线共有条【答案】126【解析】要使路线最短,则只能向东或向北走,从A地到B地归结为走完5条横线段和4条纵线段,从9个行走段中任取4个走纵线段,其余5个行走段走横线段,故共有C94=126种走法,即最短路线有126条.7现有12件产品,其中5件一级品,4件二级品,3件三级品,从中取出4件使得:(1)至少1件一级品,共几种取法?(2)至多2件一级品,共几种取法?(3)不都是一级品,共几种取法?(4)都不是一级品,共几种取法?【解析】(1)CC460(种)(2)CCCCC420(种)(3)排除都是一级品的,所以有CC490(种)(4)都

4、不是一级品,则只能从其余7件中选取,有C35(种)8从1到9的九个数字中取三个偶数和四个奇数,试问:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中三个偶数排在一起的有几个?(3)在(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个?(4)在(1)中任意两个偶数不相邻的七位数有几个?【解析】(1)分步完成,第一步在4个偶数中取3个,可有C种情况;第二步在5个奇数中取4个,可有C种情况;第三步3个偶数,4个奇数进行排列,可有A种情况,所以符合题意的七位数有CCA100 800(个)(2)上述七位数中,3个偶数排在一起的有CCAA14 400(个)(3)上述七位数中,3个偶数排在一

5、起,4个奇数也排在一起的有CCAAA5 760(个)(4)上述七位数中,偶数都不相邻,可先把4个奇数排好,再将3个偶数分别插入5个空中,共有CCAA28 800(个)【能力提升】9某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A4种B10种C18种D20种【答案】B【解析】分两类:第一类,剩余的一本是画册,则赠送方法有C种;第二类,剩余的一本是集邮册,则赠送方法有C 种,因此共有CC10种不同的赠送方法10.(2020年马鞍山模拟)某学校有5位教师参加某师范大学组织的暑期骨干教师培训,现有5个培训项目,每位教师可任意选择其中一个项目

6、进行培训,则恰有两个培训项目没有被这5位教师中的任何一位教师选择的情况数为()A.5 400 B.3 000 C.1 500 D.150【答案】C【解析】第一步:从5个培训项目中选取3个,共C种情况;第二步:5位教师分成两类:选择选出的3个培训项目的教师人数分别为1人,1人,3人,共种情况;选择选出的3个培训项目的教师人数分别为1人,2人,2人,共种情况.故选择情况数为CA1 500(种).11.(2019年浙江模拟)现有排成一排的7个不同的盒子,将红、黄、蓝、白颜色的4个小球全部放入这7个盒子中,若每个盒子最多放一个小球,则恰有两个空盒相邻且红球与黄球不相邻的不同放法共有_种.(结果用数字表

7、示)【答案】336【解析】若不考虑红球与黄球不相邻,则4个小球有A44种排法,再安排空盒,有C52A22种方法;若红球与黄球相邻,则4个小球有A33A22种排法,再安排空盒,有C42A22种方法.所以所求方法种数为A44C52A22-A33A22C42A22=336.12如下图,在以AB为直径的半圆周上,有异于A,B的六个点C1,C2,C3,C4,C5,C6,直径AB上有异于A,B的四个点D1,D2,D3,D4.(1)以这10个点中的3个点为顶点作三角形可作多少个?(2)以图中的12个点(包括A,B)中的4个点为顶点,可作出多少个四边形?【解析】(1)可分三类:第一类,C1,C2,C3,C4,C5,C6中取三点,可构成C个三角形;第二类,C1,C2,C3,C4,C5,C6中取两点,D1,D2,D3,D4中取一点,可构成CC个三角形;第三类,C1,C2,C3,C4,C5,C6中取一点,D1,D2,D3,D4中取两点,可构成CC个三角形共有CCCCC116(个)(2)构成一个四边形,需要四个点且无三点共线,共有CCCCC360(个)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁