《难点详解沪科版九年级数学下册第25章投影与视图定向测评试题(含解析).docx》由会员分享,可在线阅读,更多相关《难点详解沪科版九年级数学下册第25章投影与视图定向测评试题(含解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第25章投影与视图定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示的领奖台是由三个长方体组合而成的几何体,则这个几何体的左视图是()ABCD2、下列物体中,三视图都是圆
2、的是( )ABCD3、7个小正方体按如图所示的方式摆放,则这个图形的左视图是( )ABCD4、如图,由5个完全一样的小正方体组成的几何体的左视图是( )ABCD5、如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为()mA2B4C6D86、已知一个几何体如图所示,则该几何体的左视图是()ABCD7、图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;(2)用一个平面从不同方向去截图1中的正方体,得
3、到的截面可能是三角形、四边形、五边形或六边形;(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中ABC45;(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则ab19其中正确结论的个数有( )A1个B2个C3个D4个8、根据三视图,求出这个几何体的侧面积( )ABCD9、如图是一根空心方管,它的主视图是()ABCD10、水平放置的下列几何体,主视图不是矩形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,从三个不同方向看同一个几何体得到的平面图形,则这个几何体的侧面积是_2、阳光下,同学们整齐地站在操场上做课间操,小勇和小
4、宁站在同一列,小勇的影子正好落到后面一个同学身上,而小宁的影子却没有落到后面一个同学身上,据此判断他们的队列方向是_(填“背向太阳”或“面向太阳”),小宁比小勇_(填“高”、“矮”、或“一样高”)3、如图是某几何体的三视图已知主视图和左视图是两个全等的矩形,俯视图是直径等于2的圆,若矩形的长为3,宽为2,则这个几何体的体积为_4、如图是一个几何体的三视图(图中尺寸单位:),根据图中所示数据计算该几何体的底面周长为_5、如图为一个长方体,则该几何体从左面看得到的图形的面积为_三、解答题(5小题,每小题10分,共计50分)1、一个几何体的三种视图如图所示(1)这个几何体的名称是_;(2)求这个几何
5、体的表面积;(3)求这个几何体的体积2、如图,九(1)班的小明与小艳两位同学去操场测量旗杆DE的高度,已知直立在地面上的竿AB的长为3m某一时刻,测得竹竿AB在阳光下的投影BC的长为2m(1)请你在图中画出此时旗杆DE在阳光下的投影;(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6m,请你计算旗杆DE的高度3、下面是由一些棱长为a厘米的正方体小木块搭建成的几何体的主视图、左视图和俯视图(1)该几何体是由 块小木块组成的;(2)求出该几何体的体积;(3)求出该几何体的表面积(包含底面)4、请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图5、如图,已知小华、小强的身高
6、都是1.6m,小华、小强之间的水平距离BC为14m,在同一盏路灯下,小华的影长AB=4m,小强的影长CD=3m,求这盏路灯OK的高度-参考答案-一、单选题1、C【分析】左视图是从左边看得到的视图,结合选项即可得出答案【详解】解:A是俯视图,B、D不是该几何体的三视图,C是左视图故选:C【点睛】本题考查了简单组合体的三视图,属于基础题,从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线2、C【分析】根据主视图、左视图、俯视图的判断方法,逐项进行判断即可【详解】A、圆柱的主视图是矩形,左视图是矩形,俯视图是圆,不符合题意;B 圆锥的主视图
7、是三角形,左视图是三角形,俯视图是圆,不符合题意;C球的三视图都是圆,符合题意;D正方体的三视图都是正方形,不符合题意故选:C【点睛】题目主要考查了简单几何体的三视图,理解三视图的作法是解题的关键3、C【分析】细心观察图中几何体摆放的位置,根据左视图是从左面看到的图象判定则可【详解】解:从左边看,是左边3个正方形,右边一个正方形故选:C【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图4、B【分析】根据从左边看得到的图形是左视图,可得答案【详解】解:从从左边看有2列两层,2列从左到右分别有2、1个小正方形,故选:B【点睛】本题考查了简单组合体的三视图,解题的关键是从左边看得到的图
8、形是左视图5、B【分析】根据题意,画出示意图,易得:EDCFDC,进而可得,即DC2EDFD,代入数据可得答案【详解】解:根据题意,作EFC,树高为CD,且ECF90,ED2m,FD8m;E+F90,E+ECD90,ECDF,EDCFDC,即DC2EDFD2816,解得CD4m故选:B【点睛】本题主要考查了平行投影与相似三角形的应用,准确计算是解题的关键6、B【分析】根据几何体左视图的概念求解即可【详解】解:由左视图的概念可得,这个几何体的左视图为:故选:B【点睛】此题考查了几何体的左视图,解题的关键是熟练掌握几何体左视图的概念左视图,一般指由物体左边向右做正投影得到的视图7、B【分析】根据正
9、方体的棱的条数以及展开后平面之间应有棱连着可判断(1);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形可判断(2)(3);作出相应的俯视图,标出搭成该几何体的小正方体的个数最多(少)时的数字即可为【详解】解:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;正确,因为正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,所以至少要剪开1257条棱(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;正确,因为用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形(3)用
10、一个平面去截图1中的正方体得到图2,截面三角形ABC中ABC45;错误,因为ABC是等边三角形,所以ABC60(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b19错误,应该是a6,b11,a+b17故选:B【点睛】此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键8、D【分析】首先根据题意得出这个几何体是圆柱,然后根据三视图得出圆柱的高和底面半径,最后根据圆柱的侧面积公式求解即可【详解】解:由题意知,几何体是底面直径为10、高为20 的圆柱,所以其侧面积为故选:D【点睛】此题考查了几何体的三视
11、图,求圆柱的表面积,解题的关键是熟练掌握几何体的三视图,求圆柱的表面积公式9、A【分析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看,是内外两个正方形,故选A【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的线画虚线10、C【分析】根据从正面看到的图形是主视图,观察图形的主视图是否为矩形,即可判断【详解】解:观察各图形,其中A,B,D的主视图是矩形,C选项的主视图是三角形故C选项符合题题意,故选C【点睛】本题考查了三视图,掌握从正面看到的图形是主视图是解题的关键二、填空题1、36【分析】先确定该几何体是三棱柱,再得到底面是边长为4cm的等边三角形,侧
12、棱长为3cm,从而可得答案.【详解】解:从三视图可得得到:这个几何体是三棱柱,其底面是边长为4cm的等边三角形,侧棱长为3cm,所以这个三棱柱的侧面积为:cm2故答案为:36 cm2【点睛】本题考查的是简单几何体的三视图,根据三视图还原几何体,求解三棱柱的侧面积,掌握由三视图还原几何体是解题的关键.2、面向太阳 矮 【分析】根据小勇的影子正好落到后面一个同学身上可得他们的队列方向是面向太阳,根据同时同地,身高与影长成正比可得答案【详解】小勇的影子正好落到后面一个同学身上,他们的队列方向是面向太阳,小宁的影子却没有落到后面一个同学身上,小勇的影子比小宁的影子长,小宁比小勇矮故答案为:面向太阳,矮
13、【点睛】本题考查平行投影,熟练掌握同时同地,身高与影长成正比是解题关键3、【分析】根据三视图可知这个几何题为圆柱体,进而根据圆柱体的体积等于底面积乘以高即可求得【详解】主视图和左视图是两个全等的矩形,俯视图是直径等于2的圆,这个几何题为圆柱体,这个圆柱体体积为故答案为:【点睛】本题考查了根据三视图还原几何体,掌握基本几何体的三视图是解题的关键4、4cm【分析】根据主视图是等腰三角形,利用等腰三角形的性质,勾股定理求得底边的长,这就是圆锥底面圆的直径,计算周长即可【详解】如图,根据主视图的意义,得三角形是等腰三角形,三角形ABC是直角三角形,BC=2,底面圆的周长为:2r=4cm故答案为:4cm
14、【点睛】本题考查了几何体的三视图,熟练掌握圆锥的三视图及其各视图的意义是解题的关键5、15【分析】先判断出左视图的形状,再计算出面积即可【详解】解:图中的几何体是长方体,左视图是长为5cm,宽为3cm的长方形,由长方形的面积公式得长方形的面积为:(cm2),故答案为:15【点睛】此题考查了由几何体判断三视图,关键是根据从左面看到的形状图的相关数据得出长方形的面积三、解答题1、(1)圆柱体;(2)这个几何体的表面积为;(3)这个几何体的体积为【分析】(1)根据这个几何体的三视图即可求解;(2)根据三视图可得到圆柱的高为6,底面半径为2,然后根据圆柱的表面积等于侧面积加两个底面积求解即可;(3)根
15、据圆柱的体积等于底面积高求解即可【详解】解:(1)由图可得,主视图是长方形,左视图是长方形,俯视图是圆,这个几何体是圆柱体,故答案是:圆柱体;(2)由三视图可得,圆柱的高为6,底面半径为2,这个圆柱的表面积底面积2+侧面积;(3)这个圆柱的体积底面积高【点睛】此题考查了几何体的三视图,求圆柱的表面积和体积,解题的关键是熟练掌握三视图的表示方法以及圆柱的表面积和体积公式2、(1)见详解;(2)旗杆DE的高度为9m【分析】(1)连接AC,然后根据投影相关知识可进行作图;(2)由(1)可知ACB=DFE,然后易得ABCDEF,进而根据相似三角形的性质可求解【详解】解:(1)连接AC,过点D作DFAC
16、,交直线BC于点F,线段EF即为DE的投影,如图所示:(2)DFAC,ACB=DFE,ABC=DEF=90,ABCDEF,AB=3m,BC=2m,EF=6m,DE=9m;答:旗杆DE的高度为9m【点睛】本题主要考查相似三角形的性质与判定及投影,熟练掌握相似三角形的性质与判定及投影是解题的关键3、(1)10;(2)10a3 cm3;(3)40a2 cm2【分析】(1)根据三视图的定义解决问题即可;(2)求出10个小正方体的体积和即可;(3)还原出立体图形,进而求出各个面的面积进行加总求和【详解】解答:解:(1)几何体的小正方形的个数如俯视图所示,21+3+1+1+210故答案为:10(2)V10
17、a3(cm3)该几何体的体积为10a3cm3(3)S2(6a2+6a2+6a2)+2(a2+a2)40a2(cm2)该几何体的表面积40a2cm2【点睛】本题主要是考查了立体图形的三视图以及体积、表面积的求解,通过三视图还原得到原立体图形,需要一定的空间想象能力,另外表面积的求解,不要漏掉一些面4、作图见解析【分析】主视图:从正面看到的平面图形,左视图:从左边看到的平面图形,俯视图:从上面看到的平面图形,根据三种视图的定义,再根据看到的平面图形作图即可.【详解】解:从正面可以看到5个正方形,分3列,依次为3个,1个,1个,所以从正面看的主视图为:从左面可以看到4个正方形,分2列,依次为3个,1个, 所以从左面看的左视图为:从上面可以看到4个正方形,分3列,依次为1个,2个,1个,所以从上面看的俯视图为:【点睛】本题考查的是作简单组合体的三视图,掌握“主视图,左视图,俯视图的含义”是解题的关键.5、4.8m【分析】根据题意得到三角形相似,利用相似三角形的对应边的比列等式计算即可;【详解】解:,由题意得:,整理得:,解得:,这盏路灯OK的高度是4.8m【点睛】本题主要考查了相似三角形的判定与性质,中心投影,准确计算是解题的关键