《难点详解沪教版(上海)七年级数学第二学期第十三章相交线-平行线定向训练试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《难点详解沪教版(上海)七年级数学第二学期第十三章相交线-平行线定向训练试卷(含答案解析).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学第二学期第十三章相交线 平行线定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BCl3交l1于点B,若230,则1的度数为()
2、A30B40C50D602、下列说法中正确的是()A锐角的2倍是钝角B两点之间的所有连线中,线段最短C相等的角是对顶角D若ACBC,则点C是线段AB的中点3、如图,下列条件能判断直线l1/l2的有( );A1个B2个C3个D4个4、如图所示,直线l1l2,点A、B在直线l2上,点C、D在直线l1上,若ABC的面积为S1,ABD的面积为S2,则( )AS1S2BS1S2CS1S2D不确定5、如图,木工用图中的角尺画平行线的依据是( )A垂直于同一条直线的两条直线平行B平行于同一条直线的两条直线平行C同位角相等,两直线平行D经过直线外一点,有且只有一条直线与这条直线平行6、如图,直线AB、CD相交
3、于点O,OE平分BOC,若BOD:BOE=1:2,则AOE的大小为()A72B98C100D1087、下列说法:两直线平行,同旁内角互补;内错角相等,两直线平行;同位角相等,两直线平行;垂直于同一条直线的两条直线平行,其中是平行线的性质的是( )AB和CD和8、如图,135,AOC90,点B,O,D在同一条直线上,则2的度数为 ( )A125B115C105D959、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是( )A两点之间,线段最短B两点之间,直线最短C两点确定一条直线D直线外一点与直线上各点连接的所有线段中,垂线段最短10
4、、如图,若要使与平行,则绕点至少旋转的度数是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知 ABCDEF,BCAD,AC 平分BAD,那么图中与AGE 相等的角(不包括AGE)有_个2、下面两条平行线之间的三个图形,图_的面积最大,图_的面积最小3、如图所示,直线a,b被c所截,130,2:31:5,则直线a与b的位置关系是_4、填写推理理由:如图,CDEF,12求证:3ACB证明:CDEF,DCB2_12,DCB1_GDCB_3ACB_5、如图,OAOB,若15516,则2的度数是 _三、解答题(10小题,每小题5分,共计50分)1、如图,平
5、面上两点C、D在直线AB的同侧,按下列要求画图并填空 (1)画直线AC;(2)画射线CD;(3)画线段BD;(4)过点D画垂线段DFAB,垂足为F;(5)点D到直线AB的距离是线段 的长2、完成下列说理过程(括号中填写推理的依据):已知:如图,直线AB,CD相交于点O,求证:证明:,( ),直线AB,CD相交于点O, ( )直线相交于, ( )3、已知直线AB和CD交于点O,AOC,BOE90,OF平分AOD(1)当30时,则EOC_;FOD_(2)当60时,射线OE从OE开始以12/秒的速度绕点O逆时针转动,同时射线OF从OF开始以8/秒的速度绕点O顺时针转动,当射线OE转动一周时射线OF也
6、停止转动,求经过多少秒射线OE与射线OF第一次重合?(3)在(2)的条件下,射线OE在转动一周的过程中,当EOF90时,请直接写出射线OE转动的时间为_秒4、已知:如图,ABCDEF,点G、H、M分别在AB、CD、EF上求证: 5、如图,直线AB与CD相交于点O,OC平分BOE,OFCD,垂足为点O(1)写出AOF的一个余角和一个补角(2)若BOE60,求AOD的度数(3)AOF与EOF相等吗?说明理由6、如图,运动会上,小明自踏板M处跳到沙坑P处,甲、乙、丙三名同学分别测得PM3.25米,PN3.15米,PF3.21米,则小明的成绩为 _米(填具体数值)7、如图,直线AB与CD相交于点O,O
7、E是COB的平分线,OEOF,AOD=74,求COF的度数8、如图,在ABC中,DEAC,DFAB(1)判断A与EDF之间的大小关系,并说明理由(2)求A+B+C的度数9、如果把图看成是直线AB,EF被直线CD所截,那么(1)1与2是一对什么角?(2)3与4呢?2与4呢?10、如图,过点Q作QDAB,垂足为点D;过点P作PEAB,垂足为点E;过点Q作QFAC,垂足为点F;连P,Q两点;P,Q两点间的距离是线段_的长度;点Q到直线AB的距离是线段_的长度;点Q到直线AC的距离是线段_的长度;点P到直线AB的距离是线段_的长度-参考答案-一、单选题1、D【分析】根据平行线的性质和垂直的定义解答即可
8、【详解】解:BCl3交l1于点B,ACB90,230,CAB180903060,l1l2,1CAB60故选:D【点睛】此题考查平行线的性质,关键是根据平行线的性质解答2、B【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20的2倍是40是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;故选:B【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键
9、是:熟练掌握这些性质3、D【分析】根据平行线的判定定理进行依次判断即可【详解】1,3互为内错角,1=3,; 2,4互为同旁内角,2+4=180 ,;4,5互为同位角,4=5,; 2,3没有位置关系,故不能证明 ,1=3,故选D【点睛】此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理4、B【分析】由题意根据两平行线间的距离处处相等,可知ABC和ABD等底等高,结合三角形的面积公式从而进行分析即可【详解】解:因为l1l2,所以C、D两点到l2的距离相等,即ABC和ABD的高相等同时ABC和ABD有共同的底AB,所以它们的面积相等故选:B.【点睛】本题考查平行线间的距离以及三角形的面积,解
10、题时注意等高等底的两个三角形的面积相等5、C【分析】由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断【详解】由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行故选:C【点睛】本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题6、D【分析】根据角平分线的定义得到COEBOE,根据邻补角的定义列出方程,解方程求出BOD,根据对顶角相等求出AOC,结合图形计算,得到答案【详解】解:设BODx,BOD:BOE1:2,BOE2x,OE平分BOC,COEBOE2x,x+2x
11、+2x180,解得,x36,即BOD36,COE72,AOCBOD36,AOECOE+AOC108,故选:D【点睛】本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180是解题的关键7、A【分析】利用平行线的性质逐一判断即可【详解】是平行线的性质,故符合题意;是平行线的判定,故不符合题意;是平行线的判定,故不符合题意;是平行线的判定,故不符合题意;故选:A【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定的区别是关键8、A【分析】利用互余角的概念与邻补角的概念解答即可【详解】解:135,AOC90,BOCAOC155点B,O,D在同一条直线上,2180BOC125故选:A【
12、点睛】本题主要考查了角的和差运算,互余角的关系以及邻补角的关系准确使用邻补角的关系是解题的关键9、D【分析】根据垂线段最短即可完成【详解】根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确故选:D【点睛】本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键10、A【分析】根据“两直线平行,内错角相等”进行计算【详解】解:如图,l1l2,AOB=OBC=42,80-42=38,即l1绕点O至少旋转38度才能与l2平行故选:A【点睛】考查了旋转的性质和平行线的性质,根据平行线的性质得到AOB=OBC=42
13、是解题的关键,难度不大二、填空题1、5【分析】由ABCDEF,可得AGE=GAB=DCA;由BCAD,可得GAE=GCF;又因为AC平分BAD,可得GAB=GAE;根据对顶角相等可得AGE=CGF所以图中与AGE相等的角有5个【详解】解:ABCDEF,AGE=GAB=DCA;BCAD,GAE=GCF;又AC平分BAD,GAB=GAE;AGE=CGFAGE=GAB=DCA=CGF=GAE=GCF图中与AGE相等的角有5个故答案为:5【点睛】本题考查对顶角、邻补角及角平分线的定义和平行线的性质,根据题意仔细观察图形并找出全部答案是解题关键2、3 2 【分析】两个完全一样的三角形可以拼成一个平行四边
14、形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小【详解】解:图1、2、3的高相等,图2三角形的底是8,824,图1梯形的上、下底之和除以2,即为(2+7)24.5;图3平行四边形的底为5,54.54;所以,图3平行四边形的面积最大,图2三角形的面积最小故答案是:3,2【点睛】本题主要考查平行线的性质及等积法,熟练掌握平行线间的距离相等及等积法是解题的关键3、平行【分析】根据2:31:5,求出的度数,然后根据同位角相等两直线平行进行解答即
15、可【详解】解:2:31:5,230,12,ab,故答案为:平行【点睛】本题考查了角的和差倍分求角度以及平行的判定,根据题意求出230是解本题的关键4、两直线平行,同位角相等 等量代换 内错角相等,两直线平行 两直线平行,同位角相等 【分析】根据平行线的性质得出,求出,根据平行线的判定得出,利用平行线的性质即可得出【详解】证明:,(两直线平行,同位角相等),(等量代换)(内错角相等,两直线平行)(两直线平行,同位角相等)故答案为:两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等【点睛】题目主要考查平行线的判定定理及性质,理解题意,结合图形,综合运用判定的性质定理是
16、解题关键5、【分析】直接利用垂线的定义得出1+2=90,再求1的余角2,结合度分秒转化得出答案【详解】解:OAOB,AOB90,1+2=90,15516,29055163444故答案为:3444【点睛】本题考查垂直定义,求一个角的余角,度分秒互化,掌握垂直定义,求一个角的余角,度分秒互化是解题关键三、解答题1、(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)DF【分析】(1)连接AC并向两端延长即可;(2)连接CD并延长CD即可;(3)连接BD即可;(4)过D作线段DFAB,垂足为F;(5)根据垂线段的长度是点到直线的距离解答即可【详解】解:(1)直线AC如图所示;(2)射线CD
17、如图所示;(3)线段BD如图所示;(4)垂线段DF如图所示;(5)垂线段DF的长是点D到直线AB的距离,故答案为:DF【点睛】本题考查画直线、射线、线段、垂线段、点到直线的距离,熟练掌握基本作图方法,理解点到直线的距离的定义是解答的关键2、角平分线定义;等角的余角相等;同角的补角相等【分析】根据证明过程判断从上一步到下一步的理由即可【详解】证明:,(角平分线定义),直线AB,CD相交于点O,(等角的余角相等)直线相交于, (同角的补角相等)故答案为:角平分线定义;等角的余角相等;同角的补角相等【点睛】本题考查了对顶角、余角和补角的性质、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键3
18、、(1)60,75;(2)秒;(3)3或12或21或30【分析】(1)根据题意利用互余和互补的定义可得:EOC与FOD的度数(2)由题意先根据,得出EOF=150,则射线OE、OF第一次重合时,其OE运动的度数+OF运动的度数=150,列式解出即可;(3)根据题意分两种情况在直线OE的左边和右边,进而根据其夹角列4个方程可得时间【详解】解:(1)BOE=90,AOE=90,AOC=30,EOC=90-30=60,AOD=180-30=150,OF平分AOD,FOD=AOD=150=75;故答案为:60,75;(2)当,设当射线与射线重合时至少需要t秒,可得,解得:;答:当射线与射线重合时至少需
19、要秒;(3)设射线转动的时间为t秒,由题意得:或或或,解得:或12或21或30答:射线转动的时间为3或12或21或30秒【点睛】本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论4、见解析【分析】由ABCDEF可得,即可证明【详解】证明:ABCD(已知)(两直线平行,内错角相等) 又 CDEF(已知)(两直线平行,内错角相等) (已知)(等式性质)【点睛】本题主要考查平行线的性质,准确观察图形,推出角之间的关系是解题关键5、(1)AOF的余角是:COE或BOC或AOD;AOF的补角是BOF;(2)30;(3)AOF=EOF,
20、理由见解析【分析】(1)由OCCD,可得DOF=90,则AOF+AOD=90,由对顶角相等得BOC=AOD,则AOF+BOC=90,由OC平分BOE,可得COE=BOC,AOF+COE=90;由AOF+BOF=180,可得AOF的补角是BOF;(2)由OC平分BOE,BOE=60,可得BOC=30,再由AOD=BOC,即可得到AOD=30;(3)由(1)可得AOD=BOC=COE,再由OFOC,得到DOF=COF=90,则AOD+AOF=EOF+COE=90,即可推出AOF=EOF【详解】解:(1)OCCD,DOF=90,AOF+AOD=90,又BOC=AOD,AOF+BOC=90,OC平分B
21、OE,COE=BOC,AOF+COE=90;AOF的余角是,COE,BOC,AOD;AOF+BOF=180,AOF的补角是BOF;(2)OC平分BOE,BOE=60,BOC=30,又AOD=BOC,AOD=30;(3)AOF=EOF,理由如下:由(1)可得AOD=BOC=COE,OFOC,DOF=COF=90,AOD+AOF=EOF+COE=90,AOF=EOF【点睛】本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补6、3.15【分析】根据跳远
22、的距离应该是起跳板到P点的垂线段的长度进行求解即可【详解】解:由图形可知,小明的跳远成绩应该为PN的长度,即3.15米,故答案为:3.15【点睛】本题主要考查了点到直线的距离,熟练掌握点到直线的距离的定义是解题的关键7、53【分析】首先根据对顶角相等可得BOC=74,再根据角平分线的性质可得COE=COB=37,再利用余角定义可计算出COF的度数【详解】解:AOD=74,BOC=74,OE是COB的平分线,COE=COB=37,OEOF,EOF=90,COF=90-37=53【点睛】本题考查了角平分线的性质、余角、对顶角的性质,关键是掌握对顶角相等,角平分线把角分成相等的两部分8、(1)两角相
23、等,见解析;(2)180【分析】(1)根据平行线的性质得到A=BED,EDF=BED,即可得到结论;(2)根据平行线的性质得到C=EDB,B=FDC,利用平角的定义即可求解;【详解】(1)两角相等,理由如下:DEAC,A=BED(两直线平行,同位角相等).DFAB,EDF=BED(两直线平行,内错角相等),A=EDF(等量代换).(2)DEAC,C=EDB(两直线平行,同位角相等).DFAB,B=FDC(两直线平行,同位角相等).EDB+EDF+FDC=180,A+B+C=180(等量代换).【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键9、(1)1与2是一对同位角;(2)3
24、与4是一对内错角,2与4是一对同旁内角【分析】同位角:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两条直线被第三条直线所截,在截线同旁,且在被截直线之间的两角,叫做同旁内角;由以上概念进行判断即可【详解】解:直线AB,EF被直线CD所截,(1)1与2是一对同位角;(2)3与4是一对内错角,2与4是一对同旁内角【点睛】本题考查同位角、内错角以及同旁内角的识别,掌握这几种角的基本定义是解题关键10、作图见解析;PQ;QD;QF;PE【分析】由题意根据题目要求即可作出图示,根据两点之间距离及点到直线的距离的定义即可得出答案【详解】作图如图所示;根据两点之间距离即可得出P,Q两点间的距离是线段PQ的长度;根据点到直线的距离可得出点Q到直线AB的距离是线段QD的长度;根据点到直线的距离可得出点Q到直线AC的距离是线段QF的长度;根据点到直线的距离可得出点P到直线AB的距离是线段PE的长度.【点睛】本题主要考查基本作图和两点之间距离及点到直线的距离,熟练掌握相关概念与作图方法是解题的关键