《难点详解京改版八年级数学下册第十七章方差与频数分布专题测评试题(无超纲).docx》由会员分享,可在线阅读,更多相关《难点详解京改版八年级数学下册第十七章方差与频数分布专题测评试题(无超纲).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十七章方差与频数分布专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某养猪场对200头生猪的质量进行统计,得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示
2、,其中质量在82.5kg及以上的生猪有()A20头B50头C140头D200头2、用计算器计算方差时,要首先进入统计计算状态,需要按键( )ABCD3、甲,乙,丙,丁四个小组的同学分别参加了班级组织的中华古诗词知识竞赛,四个小组的平均分相同,其方差如下表若要从中选出一个成绩更稳定的小组参加年级的比赛,那么应选( )组名甲乙丙丁方差4.33.243.6A甲B乙C丙D丁4、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为( )A9B8C7D65、已知样本容量为30,样本频数直方图中各个小长方形的高的比
3、依次是2:4 :3 :1,则第二组的频数是()A14B12C9D86、在一个样本中,40个数据分别落在5个小组内,第1,2,3,5小组的频数分别是6,5,15,7,则第4小组的频数是( )A7B8C9D107、一组数据a1、b1、c1、d1、e1、f1、g1的平均数是m,方差是n,则另一组数据2a3、2b3、2c3、2d3、2e3、2f3、2g3的平均数和方差分别是( )A2m3、2n3B2m1、4nC2m3、2nD2m3、4n8、某班在开展“节约每一滴水”的活动中,从全班40名同学中选出10名同学汇报了各自家庭一个月的节水情况,发现节水0.5m3的有2人,水1m3的有3人,节水1.5m3的有
4、2人,节水2m3的有3人,用所学的统计知识估计全班同学的家庭一个月节约用水的总量是()A20m3B52m3C60m3D100m39、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是()A0.6B6C0.4D410、如表是某次射击比赛中10名选手的射击成绩(环):射击成绩(环)678910人数(人)12421关于这10名选手的射击环数,下列说法不正确的是( )A众数是8B中位数是5C平均数是8D方差是1.2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、对某班同学的身高进行统计(单位:厘米),频数分布表中,165.5-170.5这一组学生人数是12,频率是
5、0.24,则该班共有_名学生;155.5-160.5这一组学生人数是8,频率是_2、某农科所通过大量重复的实验,发现某种子发芽的频率在0.85附近波动,现有1000kg种子中发芽的大约有_kg3、甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为S甲2=38,S乙2=10,则_ 同学的数学成绩更稳定4、甲、乙、丙三人进行射击测试,每人射击10次的平均成绩都是9.2环,方差分别是,则三人中成绩最稳定的是_(填“甲”或“乙”或“丙”)5、一个样本的方差,则样本容量是_,样本平均数是_三、解答题(5小题,每小题10分,共计50分)1、某校组织1000名学生参加“展示我美丽祖国 ”庆国庆的自拍
6、照片的评比活动.随机机取一些学生在评比中的成绩制成的统计图表如下:频数分布表分数段频数百分比80x85a20%85x9080b90x956030%95x10020 根据以上图表提供的信息,解答下列问题:(1)写出表中a、b的数值:a= ,b= ;(2)补全频数分布表和频数分布直方图;(3)如果评比成绩在95分以上(含95 分)的可以获得一等奖,试估计该校参加此次活动获得一等 奖的人数.2、某学校要调查学生关于“新冠肺炎”防治知识的了解情况,从七、八年级各随机抽取了10名学生进行测试(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80x85,B.85x90,C.90
7、x95,D.95x100)七年级10名学生的成绩是:80,86,99,96,90,99,100,82,89,99八年级10名学生的成绩在C组中的数据是:94,90,93七、八年级抽取的学生成绩统计表 年级七年级八年级平均数9292中位数93b众数c100方差5250.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握“新冠肺炎”知识较好?请说明理由(3)该校七、八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x90)的学生人数是多少?3、某市提出城市核心价值观:“包容、尚德、守法、诚信、卓越”某校
8、德育处为了了解学生对城市核心价值观中哪一项内容最感兴趣,随机抽取了部分学生进行调查,并将调查结果绘成如图统计图请你结合图中信息解答下列问题:(1)该校共调查了多少名学生;(2)补全条形统计图;(3)若该校共有2000名学生,估计对“卓越”最感兴趣的学生有多少人?4、某校学生会为了解该校2860名学生喜欢球类活动的情况,采取抽样调查的办法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成右边的两幅不完整的统计图(如图(1),图(2),要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中
9、提供的信息,解答下列问题:(1)在这次研究中,一共调查了 名学生(2)喜欢排球的人数在扇形统计图中所占的圆心角是 度(3)补全频数分布折线统计图(4)估计该校喜欢排球的学生有多少人?5、本校将学生体质健康测试成绩分为A,B,C,D四个等级,依次记为4分,3分,2分,1分为了解学生整体体质健康状况,拟抽样进行统计分析(1)现将随机抽取的测试成绩整理并绘制成如图统计图,请求出这组数据的平均数、中位数和众数;本校部分学生体质健康测试成绩统计图(2)本校规定达到3分才算合格. 已知本校共有学生1600人,根据以上数据估计本校学生体质健康测试成绩达到合格的人数;(3)为了更好贯彻落实健康第一的指导思想,
10、请你根据以上数据对本校体育老师提出一条合理的建议-参考答案-一、单选题1、B【分析】在横轴找到82.5kg的位置,由图可知在80与85的中间,即第三个与第三个长方形的前一个边界值开始算起,将后2组频数相加,即可求解【详解】依题意,质量在82.5kg及以上的生猪有:(头)故选B【点睛】本题考查了频数直方图的应用,根据频数直方图获取信息是解题的关键2、B【分析】由于不同的计算器,其操作不完全相同,可以根据计算器的说明书进行操作【详解】解:用计算器求方差的一般步骤是:使计算器进入MODE2状态;依次输入各数据;按求的功能键,即可得出结果故选:B【点睛】本题主要考查了计算器求方差,正确掌握计算器的基本
11、使用方法是解题关键3、B【分析】根据方差的意义求解即可【详解】解:由表格知,乙的方差最小,所以若要从中选出一个成绩更稳定的小组参加年级的比赛,那么应选乙,故选:B【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好4、B【分析】根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案【详解】解:由题意得:第四组的频数=40-(2+7+11+12)=8;故选B【点睛】本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键5、B【分析】根据样本频数
12、直方图、样本容量的性质计算,即可得到答案【详解】根据题意,第二组的频数是: 故选:B【点睛】本题考查了统计调查的知识;解题的关键是熟练掌握样本容量、频数、频数直方图的性质,从而完成求解6、A【分析】每组的数据个数就是每组的频数,40减去第1,2,3,5小组数据的个数就是第4组的频数【详解】解:第4小组的频数是40(65157)7,故选:A【点睛】本题考查频数和频率的知识,注意掌握每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和7、B【分析】根据平均数和方差的变化规律即可得出答案【详解】a1、b1、c1、d1、e1、f1、g1的平均数是m,方差是n,数据a、b、c、d、
13、e、f、g的平均数是m+1,方差是n,2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数是2(m+1)-3=2m-1;数据a、b、c、d、e、f、g的方差是n,数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的方差是22n=4n;故选:B【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数8、B【分析】利用加权平均数求出选出的10名同学每家的平均节水量再利用用样本估计总体,即由平均节水量乘以总人数即可求出最后结果【详
14、解】,由此可估计全班同学的家庭一个月节约用水的总量是故选:B【点睛】本题考查加权平均数和由样本估计总体正确的求出样本的平均值是解答本题的关键9、C【分析】先求出反面朝上的频数,然后根据频率=频数总数求解即可【详解】解:小明抛一枚硬币100次,其中有60次正面朝上,小明抛一枚硬币100次,其中有40次反面朝上,反面朝上的频率=40100=0.4,故选C【点睛】本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数总数10、B【分析】根据众数、中位数、平均数及方差的定义逐一计算可得答案【详解】解:这组数据中8出现次数最多,即众数为8;其中位数是第5、6个数据的平均数,故其中位数为;平均
15、数为,方差为,故选:B【点睛】本题主要考查方差等知识,解题的关键是掌握众数、中位数、平均数及方差的计算方法二、填空题1、50 0.16 【分析】根据总数等于频数除以总数,频率等于频数除以总数求解即可【详解】依题意(人)故答案为:【点睛】本题考查了频率与频数,理解频率,频数,总数之间的关系是解题的关键频率表示每个对象出现的次数与总次数的比值2、850【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.85左右,据此求出1000kg种子中大约有多少kg种子是发芽的即可【详解】解:大量重复试验发芽率逐渐稳定在0.85左右,1000kg种子中发芽的种子的质量
16、是:10000.85=850(kg)故答案为:850【点睛】此题主要考查了频率的应用,解题的关键是根据题意列出式子进行求解3、乙【分析】根据平均数相同时,方差越小越稳定可以解答本题【详解】解:甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为S甲2=38,S乙2=10,S甲2S乙2,乙同学的数学成绩更稳定,故答案为:乙【点睛】本题考查了方差,解题的关键是明确方差越小越稳定4、丙【分析】根据方差的定义,方差越小数据越稳定即可得出答案【详解】解:S甲2=0.76,S乙2=0.71,S丙2=0.69,S甲2S乙2S丙2,三人中成绩最稳定的是丙故答案为:丙【点睛】本题考查方差的意义方差是用来衡
17、量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定5、12 3 【分析】方差公式为 ,其中n是样本容量,表示平均数根据公式直接求解【详解】解:一个样本的方差是,该样本的容量是12,样本平均数是3故答案为:12,3【点睛】此题考查方差的定义,解题的关键是熟练运用方差公式,此题难度不大三、解答题1、(1)40,40%;(2)见解析;(3)100人.【分析】(1)首先根据的频数和百分比求得抽取的样本总数,然后用样本容量减去其他小组的人数即可求得a值,用80除以样本容量即可求得b
18、值;(2)用20除以样本容量即可求得的百分比,依据(1)中结论即可补全统计表及统计图;(3)用总人数乘以获得一等奖的百分率即可估计获得一等奖的人数【详解】解:(1)抽查的学生总数为:(人),;,故答案为:40;40%;(2)成绩在的学生人数所占百分比为:,故频数分布表为:分数段频数百分比80x854020%85x908040%90x956030%95x1002010%频数分布直方图为:(3)该校参加此次活动获得一等奖的人数为:(人),答:估计该校参加此次活动获得一等奖的人数是100人【点睛】本题考查了频数分布直方图、频数分布表的有关知识,理解题意,充分运用数形结合思想来解决由统计图形式给出的数
19、学实际问题是解题关键2、(1)40,93.5,99;(2)八年级掌握得更好,理由见解析;(3)780人【分析】(1)由八年级学生成绩的扇形统计图可求得得分在C组的百分比,根据各百分比的和为1即可求得a的值;由扇形统计图可求得八年级得分在各个组的人数,从而可求得中位数b;根据七年级10名学生成绩中出现次数最多的是众数,则可得c;(2)两个年级得分的平均数相同,但八年级得分的方差较小,根据方差的特征即可判断八年级学生掌握得更好;(3)求出两个年级得分的优秀率做为全校得分的优秀率,即可求得得分为优秀的学生人数【详解】(1)由八年级学生成绩的扇形统计图,成绩在C组的学生所占的百分比为:,则a=40八年
20、级得分在A组的有:1020%=2(人),得分在B组的有:1010%=1(人),得分在D组的有:1040%=4(人)由此可知,得分的中位数为:七年级10名学生的成绩中99分出现的次数最多,即众数为99,故c=99(2)八年级学生掌握得更好理由如下:因为两个年级的平均数相同,而八年级的众数与中位数都比七年级的高,说明八年级高分的学生更多;八年级成绩的方差比七年级的方差小,说明八年级成绩的波动更小,成绩更接近(3)两个年级得分的优秀率为:120065%=780(人)所以参加此次调查活动成绩优秀的学生人数约为780人【点睛】本题是统计图与统计表的综合,考查了扇形统计图,方差、中位数、众数,样本估计总体
21、等知识,读懂统计图,从中获取信息是关键3、(1)500人;(2)见解析;(3)300人【分析】(1)用最感兴趣为“包容”的人数除以它所占的百分比即可得到调查学生的总数;(2)用总人数分别减去其他各项的人数得到最感兴趣为“尚德”的人数为100名;(3)用最感兴趣为“卓越”所占百分比乘以2000即可【详解】解:(1)15030%500(名),该校共调查了500名学生;(2)最感兴趣为“尚德”的人数5001505012575100(名),补全图形如图:(3)最感兴趣为“卓越”所占百分比100%15%,200015%300(名)所以该校共有2000名学生,估计全校对“卓越”最感兴趣的人数为300名【点
22、睛】本题考查了条形统计图和扇形统计图的综合,条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较也考查了样本估计总体4、(1)100;(2)36;(3)见解析;(4)286【分析】(1)用乒乓球的人数除以其百分比即可得到调查的学生数;(2)先计算出喜欢篮球的人数,得到喜欢排球的人数,根据公式计算喜欢排球的人数在扇形统计图中所占的圆心角度数;(3)根据(2)的数据补全统计图;(4)用学校的总人数乘以喜欢排球的比例即可得到答案【详解】解:调查的学生有(名),故答案为:100;(2)喜欢篮球的人数有(名),喜欢
23、排球的人数是100-30-20-40=10(名),喜欢排球的人数在扇形统计图中所占的圆心角是,故答案为:36;(3)如图:(4)该校喜欢排球的学生有(人)【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小5、(1)平均数是2.75分、中位数是3分,众数是3分;(2)1000人;(3)(加强体育锻炼)答案不唯一【分析】(1)根据平均数,众数及中位数的求法依次计算即可;(2)利用总人数乘以合格人数占抽查总人数的比例即可;(3)抓住健康第一,建议合理即可【详解】解:(1)平均数为:;抽查的120人中,成绩是3分出现的次数最多,共出现45次,因此众数是3分;将这120人的得分从小到大排列处在60,61两个位置的分数都是3分,因此中位数是3分;答:这组数据的平均数是2.75分,中位数是3分,众数是3分;(2)估计本校学生体质健康测试成绩达到合格的人数为:(人),估计本校学生体质健康测试成绩达到合格的人数为1000人;(3)加强体育锻炼(答案不唯一,合理即可)【点睛】题目主要考查从条形统计图获取信息,计算平均数,中位数,众数及利用部分估计整体,熟练掌握各个数据的计算方法是解题关键