《难点解析京改版八年级数学下册第十七章方差与频数分布综合练习练习题(含详解).docx》由会员分享,可在线阅读,更多相关《难点解析京改版八年级数学下册第十七章方差与频数分布综合练习练习题(含详解).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十七章方差与频数分布综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、七年级若干名学生参加歌唱比赛,其预赛成绩(分数为整数)的频数分布直方图如图,成绩80分以上(不含80分)的
2、进入决赛,则进入决赛的学生的频数和频率分别是( )A14,0.7B14,0.4C8,0.7D8,0.42、某班在体育活动中,测试了十位学生的“一分钟跳绳”成绩,得到十个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( )A平均数B中位数C方差D众数3、为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计下图是整理数据后绘制的两幅不完整的统计图以下结论不正确的是( ) A由这两个统计图可知喜欢“科普常识”的学生有90人B若该年级共有1200名学生,则可估计喜爱“科普常识
3、”的学生约有360个C由这两个统计图不能确定喜欢“小说”的人数D在扇形统计图中,“漫画”所在扇形的圆心角为4、为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是( )A本次共随机抽取了40名学生;B抽取学生中每天做家务时间的中位数落在4060分钟这一组;C如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D扇形统计图中020分钟这一组的扇形圆心角的度数是30;5、在“518世界无烟日”来临之际,小明
4、和他的同学为了解某街道大约有多少成年人吸烟,于是随机调查了该街道1000个成年人,结果有180个成年人吸烟对于这个数据的收集与处理过程,下列说法正确的是()A调查的方式是普查B该街道约有18%的成年人吸烟C该街道只有820个成年人不吸烟D样本是180个吸烟的成年人6、某手机公司新推出了四款新型手机,公司为了了解各款手机的性能,随机抽取了每款手机各50台进行测试,以下是四款手机的性能得分(满分100分,分数越高,性能越好)的平均分和方差,则这四款新型手机中性能好且稳定的是( )平均成绩(分)95989698方差3322ABCD7、为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n条鱼,在每一条鱼身上
5、做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么估计鱼塘中鱼的条数为()ABCD8、下列说法中正确的是( )A想了解某河段的水质,宜采用全面调查B想了解某种饮料中含色素的情况,宜采用抽样调查C数据1,1,2,2,3的众数是3D一组数据的波动越大,方差越小9、某班在开展“节约每一滴水”的活动中,从全班40名同学中选出10名同学汇报了各自家庭一个月的节水情况,发现节水0.5m3的有2人,水1m3的有3人,节水1.5m3的有2人,节水2m3的有3人,用所学的统计知识估计全班同学的家庭一个月节约用水的总量是()A20m3B52m3C60m3D100m310、某
6、养羊场对200头生羊量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生羊的只数是( )A180B140C120D110第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:16,9,14,11,12,10,16,8,17,19,则这组数据的极差是_2、为了了解某池塘里背蛙的数量,先从池塘里捕捞30只青蛙,作上标记后放回池塘,经过一段吋间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,估计这个池塘里大约有 _只青蛙3、八年级(1)、(2)两
7、班人数相同,在同一次数学单元测试中,班级平均分和方差如下:则成绩较为稳定的班级是_4、已知甲、乙两队员射击的成绩如图,设甲、乙两队员射击成绩的方差分别为、,则_(填“”、“”、“”)5、如果一组数据,的方差是2,那么一组新数据,的方差是_三、解答题(5小题,每小题10分,共计50分)1、2021年9月起,重庆市各中小学为落实教育部政策,全面开展课后延时服务某区教委为了了解该区中学延时服务的情况,随机抽查了甲、乙两中学各100名家长进行问卷调查家长对延时服务的综合评分记为x,将所得数据分为5组(“很满意”:;“满意”:;“比较满意”:;“不太满意”:;“不满意”:;)区教委将数据进行分析后,得到
8、如下部分信息:a甲中学延时服务得分情况扇形统计图b乙中学延时服务得分情况频数分布直方图c甲、乙两中学延时服务得分的平均数、中位数、众数如表:学校平均数中位数众数甲797980乙85m83d乙中学“满意组”的分数从高到低排列,排在最后的10个数分别是:e甲、乙两中学“满意组”的人数一样多请你根据以上信息,回答下列问题:(1)直接写出a和m的值;(2)根据以上数据,你认为哪所中学的延时服务开展得更好?并说明理由(一条即可);(3)区教委指出:延时服务综合得分在70分及以上才算合格,请你估计甲中学2000名家长中认为该校延时服务合格的人数2、为庆祝中国共产党建党100周年,某中学组织七、八年级全体学
9、生开展了“党史知识”竞赛活动,为了解竞赛情况,从两个年级各抽取10名学生的成绩(满分为100分)收集数据:七年级:90,95,95,80,85,90,80,90,85,100;八年级:85,85,95,80,95,90,90,90,100,90整理数据:80859095100七年级22321八年级124a1分析数据:平均数中位数众数方差七年级8990e八年级c90d30根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)通过计算求出e的值;(3)通过数据分析,你认为哪个年级的成绩比较好?说明理由;(4)该校七八年级共1600人,本次竞赛成绩不低于90分的为“优秀”,估计这
10、两个年级共多少名学生达到“优秀”?3、为了解某校学生睡眠时间情况,随机抽取若干学生进行调查学生睡眠时长记为x小时,将所得数据分为5组(A:;B:;C:;D:;E:),学校将所得到的数据进行分析,得到如下部分信息:请你根据以上信息,回答下列问题:(1)直接写出a的值;(2)补全条形统计图;(3)根据学校五项管理有关要求,中学生睡眠时间应不少于9个小时,那么估计该中学1000名学生中符合要求的有多少人?4、在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议学生利用双休日在各自社区参加义务劳动为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:
11、劳动时间(时)人数占整体的百分比0.51212%13030%1.5x40%218y合计m100%(1)统计表中的x ,y ;(2)被调查同学劳动时间的中位数是 时;(3)请将条形统计图补充完整;(4)求所有被调查同学的平均劳动时间(5)若该校有1500名学生,试估计双休日在各自社区参加2小时义务劳动的学生有多少?5、某市提出城市核心价值观:“包容、尚德、守法、诚信、卓越”某校德育处为了了解学生对城市核心价值观中哪一项内容最感兴趣,随机抽取了部分学生进行调查,并将调查结果绘成如图统计图请你结合图中信息解答下列问题:(1)该校共调查了多少名学生;(2)补全条形统计图;(3)若该校共有2000名学生
12、,估计对“卓越”最感兴趣的学生有多少人?-参考答案-一、单选题1、D【分析】根据题意,成绩分式为整数,则大于80.5的频数为5+3=8,根据频率等于频数除以总数即可求得【详解】依题意,成绩分式为整数,则大于80.5的频数为5+3=8,学生总数为则频率为故选D【点睛】本题考查了频数分布直方图,根据题意求频数和频率,读懂题意以及统计图是解题的关键2、B【分析】根据中位数的特点,与最高成绩无关,则计算结果不受影响,据此即可求得答案【详解】根据题意以及中位数的特点,因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,故选B【点睛】本题考查了中位数,平均数,方差,众数,理解中位数的意义是
13、解题的关键,中位数是另外一种反映数据的中心位置的指标,其确定方法是将所有数据以由小到大的顺序排列,位于中央的数据值就是中位数, 因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,而且部分数据的变动对中位数也没有影响3、C【分析】根据两个统计图的特征依次分析各选项即可作出判断,先根据其他类求得总人数,进而根据扇形统计图求得喜欢“科普常识”的学生人数,从而判断A选项,根据喜欢“科普常识”的学生所占的百分比乘以全年级人数即可判断B选项,根据总人数减去其他项的人数即可求的喜欢“小说”的人数,从而判断C选项,根据喜欢“漫画”的人数求得百分比,进而求得所占圆心角的度数从而判断D选项【详解
14、】A喜欢“科普常识”的学生有3010%30%=90人,正确,不符合题意;B若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有120030%=360个,正确,不符合题意;C喜欢“小说”的人数为3010%-60-90-30=120人,错误,故本选项符合题意.D在扇形统计图中,“漫画”所在扇形的圆心角为36060(3010%)=72,正确,不符合题意;故选C.【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小4、D【分析】由8010
15、0分钟占所抽查学生的17.5%,且由条形统计图可知有7人,可得抽查总人数,即可判断A选项;通过总人数减去其他各组人数,得到6080分钟的人数,根据中位数的定义(一组数据从小到大或从大到小排序后,最中间的数为中位数)即可判断B选项;由图中数据可得每天超过1小时的人数,然后用学校总人数乘以每天超过1小时的人数占抽查人数的比例即可判断C选项;根据扇形统计图圆心角得计算方法:乘以该组人数所占抽查总人数得比例即可判断D选项【详解】解:80100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,抽查总人数为:,A选项正确;6080分钟的人数为:人,先对数据排序后可得:最中间的数在第20,21之间,中
16、位数落在6080分钟这一组,故B选项正确;从图中可得,每天超过1小时的人数为:人,估算全校人数中每天超过1小时的人数为:人,故C选项正确;020分钟这一组有4人,扇形统计图中这一组的圆心角为:,故D选项错误;故选:D【点睛】题目主要考查通过条形统计图获取信息及估算满足条件的总人数,中位数,扇形统计图圆心角的计算等,理解题意,熟练掌握基础知识点是解题关键5、B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似【详解】解:根据题意,随机调查1000个成年人,是属于抽样调查,故A选项错误;这1000个人中180人吸烟不代表本地区只有180个成年人吸烟,
17、故C选项错误;样本是1000个成年人是否吸烟,故D选项错误;本地区约有18%的成年人吸烟是对的,故B选项正确故选:B【点睛】本题主要考查了样本估计总体思想以及抽样调查的定义,正确把握相关定义是解题关键6、D【分析】先根据平均成绩选出,然后根据方差的意义求出【详解】解:根据平均数高,平均成绩好得出的性能好,根据方差越小,数据波动越小可得出的性能好,故选:D【点睛】本题主要考查了平均数和方差,熟练掌握平均数和方差的意义是解答本题的关键7、A【分析】首先求出有记号的b条鱼在a条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数【详解】解:打捞a条鱼
18、,发现其中带标记的鱼有b条,有标记的鱼占,共有n条鱼做上标记,鱼塘中估计有n(条)故选:A【点睛】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想8、B【分析】分别根据全面调查和抽样调查的定义,众数的定义,方差的性质进行判断即可【详解】解:A、想了解某河段的水质,宜采用抽样调查,故本选项不正确,不符合题意;B、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确,符合题意;C、数据1,1,2,2,3的众数是1和2,故本选项不正确,不符合题意;D、一组数据的波动越大,方差越大,故本选项不正确,不符合题意;故选:B【点睛】本题考查了全面调查和抽样调查,方差,
19、众数,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查一组数据中出现次数最多的数据叫做众数方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好9、B【分析】利用加权平均数求出选出的10名同学每家的平均节水量再利用用样本估计总体,即由平均节水量乘以总人数即可求出最后结果【详解】,由此可估计全班同学的家庭一个月节约用水的总量是故选:B【点睛】本题考查加权平均数和由
20、样本估计总体正确的求出样本的平均值是解答本题的关键10、B【分析】根据题意和直方图中的数据可以求得质量在77.5kg及以上的生猪数,本题得以解决【详解】解:由直方图可得,质量在77.5kg及以上的生猪:90+30+20=140(头),故选B【点睛】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答二、填空题1、11【分析】根据极差=最大值-最小值求解可得【详解】解:这组数据的最大值为19,最小值为8,所以这组数据的极差为19-8=11,故答案为:11【点睛】本题主要考查极差,极差是指一组数据中最大数据与最小数据的差2、300【分析】设池塘大约有x只,根据题意,得到,计算即
21、可【详解】设池塘大约有x只,根据题意,得到,解得 x=300,经检验,x=300是原方程的根,故答案为:300【点睛】本题考查了分式方程的应用,正确列出分式方程是解题的关键3、甲班【分析】根据平均数相同,方差反应一组数据与平均数的离散程度越小说明比较稳定即可得出结论【详解】解:两班的平均成绩相同,根据方差反应一组数据与平均数的离散程度越小说明比较稳定,成绩较为稳定的班级是甲班,故答案为甲班【点睛】本题考查平均数与方差,掌握平均数的求法与方差的求法,熟练方差反应一组数据与平均数的离散程度,方差越大离散的程度越大,方差越小离散程度越小,越稳定,与整齐等是解题关键4、【分析】先计算两组数据的平均数,
22、再计算它们的方差,即可得出答案【详解】解:甲射击的成绩为:6,7,7,7,8,8,9,9,9,10,乙射击的成绩为:6,7,7,8,8,8,8,9,9,10,则甲= (6+73+82+93+10)=8,乙=(6+72+84+92+10)=8,S甲2=(6-8)2+3(7-8)2+2(8-8)2+3(9-8)2+(10-8)2=4+3+3+4=1.4;S乙2=(6-8)2+2(7-8)2+4(8-8)2+2(9-8)2+(10-8)2=4+2+2+4=1.2;1.41.2,S甲2S乙2,故答案为:【点睛】题主要考查了平均数及方差的知识方差的定义:一般地设n个数据,x1,x2,xn的平均数为,则方
23、差S2= (x1-)2+(x2-)2+(xn-)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立5、【分析】设一组数据,的平均数为,方差是,则另一组数据,的平均数为,方差是,代入方差公式,计算即可【详解】解:设一组数据,的平均数为,方差是,则另一组数据,的平均数为,方差是,则,【点睛】本题考查了方差的性质:当一组数据的每一个数都乘以同一个数时,方差变成这个数的平方倍即如果一组数据,的方差是,那么另一组数据,的方差是三、解答题1、(1);(2)见解析;(3)名【分析】(1)根据甲、乙两中学“满意组”的人数一样多得出甲组满意的人数为人,从而得出甲组满意所占总人数百分比,进而得出的值
24、;根据中位数的计算方法得出乙组的中位数位于第和的平均数;(2)根据平均数以及中位数进行分析即可;(3)由甲组70分及以上所占百分比估算甲中学2000名家长中认为该校延时服务合格的人数即可【详解】解:(1)甲、乙两中学“满意组”的人数一样多,甲满意的人数为人,甲满意的人数占甲组的百分比为:,;乙学校中位数为第名和名的平均数,乙(中位数),;(2)从平均数来看,乙学校整体成绩高于甲学校整体成绩;从中位数来看,乙学校的高分段人数较多;综上:乙学校的延时服务开展得更好;(3)甲中学70分及以上的百分比,(名),答:甲中学2000名家长中认为该校延时服务合格的人数为名【点睛】本题考查了扇形统计图,频数分
25、布直方图,中位数,平均数,由部分估计总体等知识点,读懂题意,理解相关定义是解本题的关键2、(1)a2,b90,c90,d90;(2)31;(3)八年级的学生成绩好,理由见解析;(4)1040人【分析】(1)通过八年级抽取人数10人,即可得到a,根据中位数、平均数、众数的定义得到b、c、d;(2)根据方差的计算公式,求解即可;(3)由于中位数和众数相同,通过分析平均数和方差即可得到答案;(4)根据抽取的人中,不低于90分的比例即可得到两个年级共多少名学生达到“优秀”【详解】解:(1)观察八年级95分的有2人,故a2;七年级成绩按从小到大顺序排列为80,85,85,85,90,90,90,95,9
26、5,100,七年级的中位数为,故b90;八年级的平均数为:,故c90;八年级中90分的最多,故d90;(2)七年级的方差;(3)八年级的学生成绩好,理由如下:七、八年级学生成绩的中位数和众数相同,但八年级的平均成绩比七年级高,且从方差看,八年级学生成绩更稳定,综上,八年级的学生成绩好;(4)(人),估计该校七、八年级这次竞赛达到优秀的有1040人【点睛】本题考查了中位数、众数、方差、平均数,以及样本估计总体,审清题中数据并了解基本的定义是解题的关键3、(1)a的值为8;(2)补全统计图见详解;(3)估计符合要求的人数为(人)【分析】(1)结合两个图形可得:A组频数为23,所占比例为23%,可得
27、抽取的总人数,然后利用D组的频数除以总人数即可得出D组所占的比例,求出a的值;(2)利用总人数减去各组频数求出C组频数,然后补全统计图即可;(3)根据题意可得:不少于9个小时的只有A、B两个组,可得出其所占比例,然后总人数乘以比例即可得出结果【详解】解:(1)结合两个图形可得:A组频数为23,所占比例为23%,抽取的总人数为:(人),D组所占的比例为:,a的值为8;(2)C组频数为:,补全统计图如图所示:(3)不少于9个小时的只有A、B两个组,总数为:,所占比例为:,估计符合要求的人数为:(人)【点睛】题目主要考查数据的分析,包括扇形统计图和条形统计图的结合使用,根据部分数据估算整体数据等,熟
28、练掌握根据扇形统计图和条形统计图的获取信息是解题关键4、(1)40,18%;(2)1.5;(3)见解析;(4)1.32小时;(5)270人【分析】(1)根据频率,计算即可解决问题;(2)根据中位数的定义进行解答;(3)根据(1)求出的x的值,即可补全统计图;(4)根据平均数的定义计算即可;(5)用该校的总人数乘以双休日在各自社区参加2小时义务劳动的学生所占的百分比即可【详解】解:(1)被调查的同学的总人数为(人),故答案为:40,0.18;(2)把这些数从小到大排列,中位数是第50、51个数的平均数,则中位数是(小时);故答案为:1.5;(3)根据(1)补全统计图如下:(4)所有被调查同学的平
29、均劳动时间是:(小时);(5)根据题意得:(人),答:估计双休日在各自社区参加2小时义务劳动的学生有270人【点睛】本题主要考查了条形统计图,平均数、中位数,用样本估计总体,根据统计图找出有用信息是解答此题的关键5、(1)500人;(2)见解析;(3)300人【分析】(1)用最感兴趣为“包容”的人数除以它所占的百分比即可得到调查学生的总数;(2)用总人数分别减去其他各项的人数得到最感兴趣为“尚德”的人数为100名;(3)用最感兴趣为“卓越”所占百分比乘以2000即可【详解】解:(1)15030%500(名),该校共调查了500名学生;(2)最感兴趣为“尚德”的人数5001505012575100(名),补全图形如图:(3)最感兴趣为“卓越”所占百分比100%15%,200015%300(名)所以该校共有2000名学生,估计全校对“卓越”最感兴趣的人数为300名【点睛】本题考查了条形统计图和扇形统计图的综合,条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较也考查了样本估计总体