《难点详解京改版九年级数学下册第二十四章-投影、视图与展开图专项练习试题(含解析).docx》由会员分享,可在线阅读,更多相关《难点详解京改版九年级数学下册第二十四章-投影、视图与展开图专项练习试题(含解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十四章 投影、视图与展开图专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是一个几何体的实物图,则其主视图是( )ABCD2、如图是某个几何体的展开图,该几何体是( )A三棱
2、锥B三棱柱C四棱锥D四棱柱3、下列说法错误的是()A六棱柱有六个侧面,侧面都是长方形B球体的三种视图均为同样大小的圆C棱锥都是由平面围成的D一个直角三角形绕其直角边旋转一周得到的几何体是圆锥4、如图,身高1.5米的小明(AB)在太阳光下的影子AG长1.8米,此时,立柱CD的影子一部分是落在地面的CE,一部分是落在墙EF上的EH若量得米,米,则立柱CD的高为( )A2.5mB2.7mC3mD3.6m5、一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“您”相对的字是()A牛B年C愉D快6、已知一个几何体如图所示,则该几何体的左视图是()ABCD7、如图是由5个大小相
3、同的小正方体组成的几何体,则它的俯视图是()ABCD8、下列四个几何体中,主视图与俯视图不同的几何体是( )ABCD9、如图是一个正方体的平面展开图,把展开图折叠成正方体后,“红”字的面的对面上的字是( ) A传B因 C承D基10、如图所示的几何体的左视图为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个长方体形状的粉笔盒展开如图所示,相对的两个面上的数字之和等于5,则a+b+c=_2、找出与图中几何体对应的从三个方向看到的图形,并在横线上填上对应的序号 3、如图是一个正方体的表面展开图,相对面上两个数互为相反数,则xy_4、由n个相同的小正方体堆成的几
4、何体,其主视图、俯视图如图所示,则n的最大值是_5、如图,点C为扇形OAB的半径OB上一点,将OAC沿AC折叠,点O恰好落在上的点D处,且l:l1:3(l表示的长),若将此扇形OAB围成一个圆锥,则圆锥的底面半径与母线长的比为_三、解答题(5小题,每小题10分,共计50分)1、如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置,(1)在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为 (2)请你在图中画出小亮站立AB处的影子2、由5个相同的小立方块搭成的几何体如图所示,请画出从三个方向看所
5、得到的形状图3、如图,是由若干个完全相同的小正方体组成的一个几何体(1)请画出这个几何体的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么请画出添加小正方体后所得几何体所有可能的主视图4、如图所示是由6个大小相同的小立方体搭成的几何体,请你画出它的主视图与左视图5、如图是由几个相同的小立方块所搭几何体的俯视图(从上面往下观察几何体所看到的形状),小正方形中的数字表示在该位置小立方块的个数请解答下列问题:(1)从正面、左面观察该几何体,分别画出你所看到的图形;(2)若小立方块的棱长为2,则从正面观察该几何体时,你所看到的形状的面积是 -
6、参考答案-一、单选题1、C【分析】找到从正面看所得到的图形即可【详解】解:从正面看可得到一个矩形和一个下底和矩形相邻的梯形的组合图故选:C【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图2、B【分析】由展开图可得,改几何体由三个面的长方形,两个面是三角形,据此可得该几何体是三棱柱【详解】解:由由展开图可得,改几何体由三个面的长方形,两个面是三角形,所以该几何体是三棱柱故选:B【点睛】本题考查几何体的展开图,从实物出发,结合具体问题,辨析几何体的展开图,通过结合立体图形与平面图象的转化,建立空间观念,是解题关键3、A【分析】根据棱柱,球体,棱锥,圆锥的形状进行判断即可【详解】解:
7、A、直六棱柱有六个侧面,侧面都是长方形,原说法错误,符合题意;B、球体的三种视图均为同样大小的圆,原说法正确,不符合题意;C、棱锥都是由平面围成的,原说法正确,不符合题意;D、一个直角三角形绕其直角边旋转一周得到的几何体是圆锥,原说法正确,不符合题意;故选:A【点睛】本题考查了简单几何体,解题的关键是了解一些几何体的形状,难度不大4、A【分析】将太阳光视为平行光源,可得,MD=HE,即可得CM的值,故计算CD=CM+DM即可【详解】如图所示,过D点作BG平行线交FE于点H,过E点作BG平行线交CD于点MBG/ME/DHBGA=MEC,BAG=DCE=90,MD=HECD=CM+DM=1+1.5
8、=2.5故答案选:A【点睛】本题考查了相似三角形的判断即性质,由太阳光投影判断出平行关系进而求得相似是解题的关键5、B【分析】根据正方体表面展开图的特征进行判断即可【详解】解:由正方体表面展开图的“相间、Z端是对面”可知,“您”的对面是“年”,故选:B【点睛】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的关键6、B【分析】根据几何体左视图的概念求解即可【详解】解:由左视图的概念可得,这个几何体的左视图为:故选:B【点睛】此题考查了几何体的左视图,解题的关键是熟练掌握几何体左视图的概念左视图,一般指由物体左边向右做正投影得到的视图7、C【分析】根据几何体的结构特征及俯视
9、图可直接进行排除选项【详解】解:如图是由5个大小相同的小正方体组成的几何体,则它的俯视图是;故选C【点睛】本题主要考查从不同方向看几何体,熟练掌握几何体的特征是解题的关键8、C【分析】正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同【详解】解:A、正方体的主视图与俯视图都是正方形,选项不符合题意;B、圆柱横着放置时,主视图与俯视图都是长方形,选项不符合题意;C、圆锥的主视图与俯视图分别为圆形、三角形,故符合题意;D、球体的主视图与俯视图都是圆形,故不符合题意故选:C【点睛】本题考查了简单的几何体的三视图,从不
10、同方向看物体的形状所得到的图形可能不同9、D【分析】正方体的表面展开图,相对的面之间一般情况相隔一个正方形,根据这一特点作答【详解】解:正方体的表面展开图,相对的面之间一般情况相隔一个正方形,“传”与“因”是相对面,“承”与“色”是相对面,“红”与“基”是相对面故选:D【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体是空间图形,从相对面入手,分析及解答问题10、C【分析】找到从左边看所得到的图形即可,注意所有看得到的棱用实线表示,看不到的部分用虚线表示【详解】解:从左边看到的图形是:故选C【点睛】本题考查了简单组合体的三视图,理解看不到的且存在的是虚线解题的关键二、填空题1、11【分
11、析】长方体的表面展开图,相对的面之间一定相隔一个长方形,根据这一特点作答即可【详解】解:长方体的表面展开图,相对的面之间一定相隔一个长方形,“-1”与“a”是相对面,“3”与“c”是相对面,“2”与“b”是相对面,又相对的两个面上的数字之和等于5,a=6,b=3,c=2,a+b+c=6+3+2=11,故答案为:11【点睛】本题主要考查了正方体相对两个面上的文字,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键2、【分析】在正面得到由前到后观察物体的视图叫主视图,在水平面得到由上到下观察物体的视图叫俯视图,在侧面得到由左到右观察
12、物体的视图叫左视图,根据三视图的定义求解即可【详解】根据三视图的定义可知:第一个三视图所对应的几何体为;第二个三视图所对应的几何体为;第三个三视图对应的几何体为;第四个三视图对应的几何体为;故答案为:【点睛】本题考查三视图,熟知三视图的定义是解题的关键3、-6【分析】首先根据正方体的表面展开图的性质得到2和x是相对面上两个数,4和y是相对面上两个数,然后根据相反数的性质求出x和y的值,最后代入(xy)求解即可【详解】解:由正方体的表面展开图可得,2和x是相对面上两个数,4和y是相对面上两个数,解得:,故答案为:-6【点睛】此题考查了正方体的表面展开图,相反数的性质,代数式求值问题,解题的关键是
13、正确分析出正方体的表面展开图中相对面上两个数4、13【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案【详解】综合主视图和俯视图,从上往下数,底面最多有 2+2+3=7 个,第二层最多有1+1+2=4 个,第三层最多有1+0+1=2 个,则n的最大值是 7+4+2=13 故答案为:13【点睛】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键5、2:9【分析】连接OD,能得AOB的度数,再利用弧长公式和圆的周长公式可求解【详解】解:连接OD交OC于M由折叠的知识可得:OMOA,OMA90,OAM30,AOM60,且l:l1:3,AOB80设圆锥的底面半径为r,母线
14、长为l,2r,r:i2:9故答案是2:9【点睛】本题运用了弧长公式和轴对称的性质,关键是运用了转化的数学思想三、解答题1、(1)变短;(2)见详解【分析】(1)先选取B,O之间一点D,分别作出小亮的影子,比较代表影长的线段长度即可得出变化情况即可;(2)连结线段PA,并延长交底面于点E,得到线段BE即可【详解】解(1)在小亮由B处沿BO所在的方向行走到达O处的过程取点D,通过灯光在B处小亮的影长为BE,当小亮走到D处时,小亮的影长为FD,BEFD,小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短,故答案为:变短;(2)如图所示,连结PA,并延长交底面于E,则
15、线段BD为求作小亮的影长【点睛】本题考查投影知识,从远处向灯光处走去影长的变化,掌握影长变化规律,向灯光走近,影长变短,远离灯光,影长变长,先走近再走远先变短再变长是解题关键2、见解析【分析】根据立方体的三视图解答【详解】解:如图:【点睛】此题考查立体图形的三视图画法,正确掌握画立体图形的方法及掌握立体图形的特点是解题的关键3、(1)见解析;(2)5种【分析】(1)由已知条件可知,左视图有2列,每列小正方数形数目分别为3、1,俯视图有3列,每列小正方数形数目分别为2、1、1,据此可画出图形;(2)左视图和俯视图不变得出:主视图的第一列不能变化,第2列加一个,第3列加一个或两个,共5种情况【详解
16、】(1)画图如下:(2)左视图和俯视图不变得出:主视图的第一列不能变化,第2列加一个,第3列加一个或两个,共5种情况【点睛】本题考查了几何体的三视图画法由立体图形,可知主视图、左视图、俯视图,并能得出有几列以及每一列上的数字4、主视图与左视图见详解【分析】根据图示确定几何体的三视图即可得到答案,从正面看有三层,从上往下个数分别为1,1,3个,从左边看由2列,从左往右分别为3,1个小正方形,据此作出主视图和左视图即可【详解】解:由几何体可知,该几何体的主视图和左视图依次为:【点睛】本题考查了简单几何体的三视图,掌握三视图的视图方位及画法是解题的关键5、(1)见解析;(2)16【分析】(1)根据俯视图的信息,以及左视图和主视图的定义画图即可;(2)在(1)的基础之上求解即可【详解】解:(1)由俯视图可知,该组合体的主视图有3列,第1列有一个正方形,第2列有2个正方形,第3列有1个正方形;左视图有2列,第1列有2个正方形,第2列有2个正方形,如图所示:(2)由主视图可知,共有4个相同的正方形组成,故答案为:16【点睛】本题考查画简单组合体的三视图,理解三视图的定义,灵活运用空间想象能力是解题关键