《难点解析沪教版(上海)七年级数学第二学期第十三章相交线-平行线专项测评试卷(精选含答案).docx》由会员分享,可在线阅读,更多相关《难点解析沪教版(上海)七年级数学第二学期第十三章相交线-平行线专项测评试卷(精选含答案).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学第二学期第十三章相交线 平行线专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,下列条件中,不能判断的是( )A1=3B2=4C4+5=180D3=42、如图,直线ab,RtABC的
2、直角顶点C在直线b上若150,则2的度数为( )A30B40C50D603、如图,1与2是同位角的是( ) ABCD4、如图,ABEF,则A,C,D,E满足的数量关系是( )AA+C+D+E360BA+DC+ECAC+D+E180DEC+DA905、直线、如图所示若1=2,则下列结论错误的是( )AABCDBEFB=3C4=5D3=56、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150,则第二次的拐角为()A40B50C140D1507、如图,下列选项中,不能得出直线的是( )A12B45C2+4180D138、下列各图中,1与2是对顶角的是()ABCD9、下列命题中,为
3、真命题的是( )A若,则B若,则C同位角相等D对顶角相等10、如图,1=2,3=25,则4等于( )A165B155C145D135第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、指出图中各对角的位置关系:(1)C和D是_角;(2)B和GEF是_角;(3)A和D是_角;(4)AGE和BGE是_角;(5)CFD和AFB是_角 2、如图,将一副三角板按如图所示的方式摆放,ACDF,BC与EF相交于点G,则CGF度数为 _度3、填写推理理由:如图,CDEF,12求证:3ACB证明:CDEF,DCB2_12,DCB1_GDCB_3ACB_4、如图,E在AD的延长线上,下列四个条
4、件:3=4;C+ABC=180;A=CDE;1=2,其中能判定ABCD的是_(填序号)5、如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与反射光线的夹角为50,则平面镜与水平地面的夹角的度数是_三、解答题(10小题,每小题5分,共计50分)1、已知:如图,ABCDEF,点G、H、M分别在AB、CD、EF上求证: 2、完成下列填空:已知:如图,CA平分;求证:证明:(已知)_( )(已知)_( )又CA平分(已知)_( )(已知)_=30( )3、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上将AEF沿折痕EF翻折,点A落在点A处;将DEG沿折痕EG翻折,点D落在点
5、D处(1)如图1,若AEF40,DEG35,求AED的度数;(2)如图1,若AED,求FEG的度数(用含的式子表示);(3)如图2,若AED,求FEG的度数(用含的式子表示)4、如图,直线AB,CD,EF相交于点O,(1)指出AOC,EOB的对顶角及AOC的邻补角(2)图中一共有几对对顶角?指出它们5、感知与填空:如图,直线ABCD求证:B+D=BED证明:过点E作直线EFCD,2=_,( )ABCD(已知),EFCD_EF,( )B=1,( )1+2=BED,B+D=BED,( )方法与实践:如图,直线ABCD若D=53,B=22,则E=_度6、如图,在86的正方形网格中,每个小正方形的顶点
6、称为格点,点D是ABC的边BC上的一点,点M是ABC内部的一点,点A、B、C、D、M均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,并回答问题:(1)过点M画BC的平行线MN交AB于点N;(2)过点D画BC的垂线DE,交AB于点E;(3)点E到直线BC的距离是线段 的长度7、完成下面的证明:已知:如图,130,B60,ABAC求证:ADBC证明:ABAC(已知) 90( )130,B60(已知)1+BAC+B ( )即 +B180ADBC( )8、阅读下面的推理过程,将空白部分补充完整已知:如图,在ABC中,FGCD,1 = 3求证:B + BDE= 180解:因为FGCD(已知),所
7、以1= 又因为1 = 3 (已知),所以2 = (等量代换)所以BC ( ),所以B + BDE = 180(_)9、如图,直线相交于点平分(1)若,求BOD的度数;(2)若,求DOE的度数10、按要求画图,并回答问题: 如图,平面内有三个点A,B,C. 根据下列语句画图:(1)画直线AB;(2)射线BC;(3)延长线段AC到点D,使得; (4)通过画图、测量,点B到点D的距离约为_cm(精确到0.1);(5)通过画图、测量,点D到直线AB的最短距离约为_cm(精确到0.1)-参考答案-一、单选题1、D【分析】根据平行线的判定定理对各选项进行逐一判断即可【详解】解:、,内错角相等,故本选项错误
8、,不符合题意;、,同位角相等,故本选项错误,不符合题意;、,同旁内角互补,故本选项错误,不符合题意;、,它们不是内错角或同位角,与的关系无法判定,故本选项正确,符合题意故选:D【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识2、B【分析】由平角的定义可求得BCD的度数,再利用平行线的性质即可求得2的度数【详解】解:如图所示:150,ACB90,BCD1801BCD40,ab,2BCD40故选:B【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等3、B【分析】同位角就是两个角都在截
9、线的同旁,又分别处在被截线的两条直线的同侧位置的角【详解】根据同位角的定义可知中的1与2是同位角;故选B【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键4、C【分析】如图,过点C作CGAB,过点D作DHEF,根据平行线的性质可得AACG,EDH180E,根据ABEF可得CGDH,根据平行线的性质可得CDHDCG,进而根据角的和差关系即可得答案【详解】如图,过点C作CGAB,过点D作DHEF,AACG,EDH180E,ABEF,CGDH,CDHDCG,ACDACG+CDHA+CDE(180E),AACD+CDE+E180故选:C【点睛】本题考查了平行线的性质,两直线平行,同位角相等;
10、两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质,正确作出辅助线是解题关键5、D【分析】根据平行线的判定与性质、对顶角相等逐项判断即可【详解】解:1=2,ABCD,故A正确,不符合题意;4=5,故C正确,不符合题意;EFB与3是对顶角,EFB=3,故B正确,无法判断3=5,故D错误,符合题意,故选:D【点睛】本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键6、D【分析】由于拐弯前、后的两条路平行,可考虑用平行线的性质解答【详解】解:拐弯前、后的两条路平行,B=C=150(两直线平行,内错角相等)故选:D【点睛】本题考查平行线的性质,解答此题的
11、关键是将实际问题转化为几何问题,利用平行线的性质求解7、A【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,分别进行分析即可【详解】解:A、12,不能判断直线,故此选项符合题意;B、根据同位角相等,两直线平行,可判断直线,故此选项不合题意;C、根据同旁内角互补,两直线平行,可判断直线,故此选项不合题意;D、根据内错角相等,两直线平行,可判断直线,故此选项不合题意故选:A【点睛】此题主要考查了平行线的判定,关键是掌握平行线的判定定理8、B【分析】根据对顶角的定义作出判断即可【详解】解:根据对顶角的定义可知:只有B选项的是对顶角,其它都不是故选
12、:B【点睛】本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角9、D【分析】利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可【详解】解:A、若,则或,故A错误B、当时,有,故B错误C、两直线平行,同位角相等,故C错误D、对顶角相等,D正确故选:D 【点睛】本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键10、B【分析】设4的补角为,利用1=2求证,进而得到,最后即可求出4【详解】解:设4的补角为,如下图所示:1=2,故选:B【点睛
13、】本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键二、填空题1、同旁内 同位 内错 邻补 对顶 【分析】根据同位角,同旁内角,内错角,邻补角,对顶角的定义进行逐一判断即可【详解】解:(1)C和D是同旁内角;(2)B和GEF是同位角;(3)A和D是内错角;(4)AGE和BGE是邻补角;(5)CFD和AFB是对顶角;故答案为:(1)同旁内 (2)同位 (3)内错 (4)邻补(5)对顶【点睛】本题主要考查了同位角,同旁内角,内错角,邻补角,对顶角的定义,解题的关键在于能够熟知定义2、30【分析】先证明再证明再利用平行线的性质与对顶角的
14、性质可得答案.【详解】解:如图,记交于点 由题意得: 故答案为:【点睛】本题考查的是平行线的判定与性质,掌握“两直线平行,同位角相等与同旁内角互补,两直线平行”是解本题的关键.3、两直线平行,同位角相等 等量代换 内错角相等,两直线平行 两直线平行,同位角相等 【分析】根据平行线的性质得出,求出,根据平行线的判定得出,利用平行线的性质即可得出【详解】证明:,(两直线平行,同位角相等),(等量代换)(内错角相等,两直线平行)(两直线平行,同位角相等)故答案为:两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等【点睛】题目主要考查平行线的判定定理及性质,理解题意,结合
15、图形,综合运用判定的性质定理是解题关键4、【分析】根据平行线的判定定理,逐一判断,即可得到答案【详解】,不符合题意;C+ABC=180,ABCD;符合题意;A=CDE,ABCD;符合题意;1=2,ABCD故答案为:【点睛】本题主要考查平行线的判定定理,掌握平行线的判定定理是解题的关键平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行5、65【分析】作CD平面镜,垂足为G,交地面于D根据垂线的性质可得CDH+=90,根据平行线的性质可得AGC=CDH,根据入射角等于反射角可得,从而可得夹角的度数【详解】解:如图,作CD平面镜,垂足为G,交地面于DCDH+=90
16、,根据题意可知:AGDF,AGC=CDH,CDH=25,=65故答案为:65【点睛】本题考查了入射角等于反射角问题,解决本题的关键是掌握平行线的性质、明确法线CG平分AGB三、解答题1、见解析【分析】由ABCDEF可得,即可证明【详解】证明:ABCD(已知)(两直线平行,内错角相等) 又 CDEF(已知)(两直线平行,内错角相等) (已知)(等式性质)【点睛】本题主要考查平行线的性质,准确观察图形,推出角之间的关系是解题关键2、180;两直线平行,同旁内角互补;60;等式的性质;30;角平分线的定义;两直线平行,内错角相等【分析】由AB与CD平行,利用两直线平行同旁内角互补求出BCD度数,由C
17、A为角平分线,利用角平分线定义求出2的度数,再利用两直线平行内错角相等即可确定出1的度数【详解】证明:ABCD,(已知)B+BCD=180,(两直线平行同旁内角互补)B=120(已知),BCD=60又CA平分BCD(已知),2=30,(角平分线定义)ABCD(已知),1=2=30(两直线平行内错角相等)故答案为:180;两直线平行,同旁内角互补;60;等式的性质;30;角平分线定义;2;两直线平行,内错角相等【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键3、(1);(2);(3)【分析】(1)由折叠的性质,得到,然后由邻补角的定义,即可求出答案;(2)由折叠的性
18、质,先求出,然后求出FEG的度数即可;(3)由折叠的性质,先求出,然后求出FEG的度数即可【详解】解:(1)将AEF沿折痕EF翻折,点A落在点A处;将DEG沿折痕EG翻折,点D落在点D处,;(2)根据题意,则,;(3)根据题意,;【点睛】本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到,4、(1)AOC的对顶角是BOD,EOB的对顶角是AOF,.AOC的邻补角是AOD,BOC;(2)共有6对对顶角,它们分别是AOC与BOD,AOE与BOF,AOF与BOE,AOD与BOC,EOD与COF,EOC与FOD【分析】根据对顶角的定义:两个角有一个公共点,并且一个角的两边分别
19、是另一个角的两边的反向延长线,具有这种位置关系的两个角叫做对顶角;邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种位置关系的两个角叫做邻补角,进行求解即可【详解】解:(1)由题意得:AOC的对顶角是BOD,EOB的对顶角是AOF.AOC的邻补角是AOD,BOC.(2)图中共有6对对顶角,它们分别是AOC与BOD,AOE与BOF,AOF与BOE,AOD与BOC,EOD与COF,EOC与FOD【点睛】本题主要考查了对顶角和邻补角的定义,熟知定义是解题的关键5、D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换
20、;31【分析】过点E作直线EF/CD,由两直线平行,内错角相等得出2=D;由两直线都和第三条直线平行,那么这两条直线也互相平行得出AB/EF;由两直线平行,内错角相等得出B=1;由1+2=BED,等量代换得出B+D=BED;方法与实践:如图,由平行的性质可得BOD=D=53,然后再根据三角形外角的性质解答即可【详解】解:过点E作直线EFCD,2=D,(两直线平行,内错角相等)ABCD(已知),EFCDAB/EF,(两直线都和第三条直线平行,那么这两条直线也互相平行)B=1,(两直线平行,内错角相等)1+2=BED,B+D=BED,(等量代换 )方法与实践:如图,直线ABCDBOD=D=53BO
21、D=E+BE=BOD-B=53- 22=31故答案依次为:D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31【点睛】本题主要考查了平行线的判定与性质、三角形内角和定理等知识点;熟练掌握平行线的性质是解答本题的关键6、(1)见解析;(2)见解析;(3)DE【分析】(1)根据平行线的判定条件:同位角相同,两直线平行,进行作图即可;(2)根据垂线的定义作图即可;(3)根据点到直线的距离的定义求解即可【详解】解:(1)如图所示,点N即为所求;(2)如图所示,点E即为所求;(3)由题意可知:点E到直线BC的距离是线段DE的长度,故
22、答案为:DE【点睛】本题主要考查了点到直线的距离,平行线的判定,作垂线,画平行线,解题的关键在于能够熟练掌握相关知识进行求解7、见解析【分析】先根据垂直的定义可得,再根据角的和差可得,从而可得,然后根据平行线的判定即可得证【详解】证明:(已知),(垂直的定义),(已知),(等量关系),即,(同旁内角互补,两直线平行)【点睛】本题考查了垂直、平行线的判定等知识点,熟练掌握平行线的判定是解题关键8、2;3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】首先根据两直线平行,同位角相等可得到,然后根据角度之间的等量代换可得到,然后根据内错角相等,两直线平行可得到,最后根据两直线平行,同
23、旁内角互补可得到B + BDE = 180【详解】解:因为FGCD(已知),所以1=2又因为1 = 3 (已知),所以2 =3(等量代换)所以(内错角相等,两直线平行),所以B + BDE = 180(两直线平行,同旁内角互补)故答案为:2;3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并能熟练运用9、(1)20;(2)60【分析】(1)先求出AOF=140,然后根据角平分线的定义求出AOC=70,再由垂线的定义得到AOB=90,则BOD=180-AOB-AOC=20;(2)先求出AOE=60,从而得
24、到AOF=120,根据角平分线的性质得到AOC =60,则COE=AOE+AOC=120,DOE=180-COE=60【详解】解:(1)AOE=40,AOF=180-AOE=140,OC平分AOF,AOC=AOF=70,OAOB,AOB=90,BOD=180-AOB-AOC=20;(2)BOE=30,OAOB,AOE=60,AOF=180-AOE=120,OC平分AOF,AOC=AOF=60,COE=AOE+AOC=60+60=120,DOE=180-COE=60【点睛】本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义10、(1)见解析;(2
25、)见解析;(3)见解析;(4)3.5;(5)1.4【分析】(1)根据直线定义即可画直线AB;(2)根据射线定义即可画直线BC;(3)根据线段定义即可连接AC并延长到点D,使得CD=AC;(4)通过画图、测量,即可得点B到点D的距离(5)通过画图、测量,即可得点D到直线AB的距离【详解】解:(1)如图,直线AB即为所求;(2)如图,射线BC即为所求;(3)如图,线段CD即为所画;(4)通过画图、测量,点B到点D的距离约为3.5cm,故答案为:3.5;(5)通过画图、测量,点D到点AB的距离DE约为1.4cm故答案为:1.4【点睛】本题考查了基本作图、直线是向两方无限延伸的,射线是向一方无限延伸的;线段有两个端点、两点间的距离,点到直线间的距离,解决本题的关键是准确作图