精品试卷北师大版九年级数学下册第一章直角三角形的边角关系专项练习试题(含答案解析).docx

上传人:知****量 文档编号:28216727 上传时间:2022-07-26 格式:DOCX 页数:26 大小:593.36KB
返回 下载 相关 举报
精品试卷北师大版九年级数学下册第一章直角三角形的边角关系专项练习试题(含答案解析).docx_第1页
第1页 / 共26页
精品试卷北师大版九年级数学下册第一章直角三角形的边角关系专项练习试题(含答案解析).docx_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《精品试卷北师大版九年级数学下册第一章直角三角形的边角关系专项练习试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《精品试卷北师大版九年级数学下册第一章直角三角形的边角关系专项练习试题(含答案解析).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学下册第一章直角三角形的边角关系专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABC中, ,则ABC一定是( )A直角三角形B等腰三角形C等边三角形D等腰直角三角形2、如图,为测量一幢

2、大楼的高度,在地面上与楼底点相距30米的点处,测得楼顶点的仰角,则这幢大楼的高度为( )A米B米C米D米3、在正方形网格中,ABC的位置如图所示,点A、B、C均在格点上,则cosB的值为()ABCD4、在RtABC中,C90,AC5,BC3,则sinA的值是( )ABCD5、在直角ABC中,AC2,则tanA的值为( )ABCD6、如图,在平面直角坐标系系中,直线与轴交于点,与轴交于点,与反比例函数在第一象限内的图象交于点,连接若,则的值是( )ABCD7、如图,正方形ABCD中,AB6,E为AB的中点,将ADE沿DE翻折得到FDE,延长EF交BC于G,FHBC,垂足为H,连接BF、DG以下结

3、论:BFED;DFGDCG;FHBEAD;tanGEB;其中正确的个数是( )A4B3C2D18、如图,在的正方形网格中,每个小正方形的边长均为1,已知的顶点位于正方形网格的格点上,且,则满足条件的是( )ABCD9、如图,ABC的顶点在正方形网格的格点上,则cosACB的值为( )ABCD10、如图,在平面直角坐标系中,直线与轴交于点C,与反比例函数在第一象限内的图象交于点B,连接BO,若,则的值是( )A-20B20C5D5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,中,D为边上一动点(不与B,C重合),和的垂直平分线交于点E,连接、和、与的交点记为点F下

4、列说法中,;当时,正确的是_(填所有正确选项的序号)2、如图,直线yx+b与y轴交于点A,与双曲线y在第三象限交于B、C两点,且ABAC16下列等边三角形OD1E1,E1D2E2,E2D3E3,的边OE1,E1E2,E2E3,在x轴上,顶点D1,D2,D3,在该双曲线第一象限的分支上,则k_,前25个等边三角形的周长之和为_3、如图,如果小华沿坡度为的坡面由A到B行走了8米,那么他实际上升的高度为_米4、在矩形ABCD中,BC3AB,点P在直线BC上,且PCAB,则APB的正切值为 _5、在中,则的度数是_三、解答题(5小题,每小题10分,共计50分)1、计算:2sin303tan45sin2

5、45+cos602、计算:4sin60|2| +(1)20213、计算:327-2021-0-2cos30+-12-14、(1)计算:(2)解方程:5、如图是位于奉贤南桥镇解放东路 866 号的 “奉贤电视发射塔”, 它建于 1996 年,在长达二十几年的时间里它一直是奉贤区最高建筑物, 该记录一直保持到 2017年, 历了25 年风雨的电视塔铎刻了一代奉贤人的记忆某数学活动小组在学习了 “解直角三角形的应用” 后, 开展了测量“奉贤电视发射塔的高度”的实践活动测量方案:如图, 在电视塔附近的高楼楼顶 处测量塔顶 处的仰角和塔底 处的俯角数据收集:这幢高楼共 12 层, 每层高约 米, 在高楼

6、楼项 处测得塔顶 处的仰角为 , 塔底 处的俯角为 .问题解决:求奉贤电视发射塔 的高度(结果精确到 1 米)参考数据:, , 根据上述测量方案及数据, 请你完成求解过程-参考答案-一、单选题1、D【分析】结合题意,根据乘方和绝对值的性质,得,从而得,根据特殊角度三角函数的性质,得,;根据等腰三角形和三角形内角和性质计算,即可得到答案【详解】解:,ABC一定是等腰直角三角形故选:D【点睛】本题考查了绝对值、三角函数、三角形内角和、等腰三角形的知识;解题的关键是熟练掌握绝对值、三角函数的性质,从而完成求解2、C【分析】利用在RtABO中,tanBAO即可解决【详解】:解:如图,在RtABO中,A

7、OB90,A65,AO30m,tan65,BO30tan65米故选:C【点睛】本题考查解直角三角形的应用,解题的关键是熟知正切函数为对边比邻边3、B【分析】如图所示,过点A作AD垂直BC的延长线于点D得出ABD为等腰直角三角形,再根据45角的余弦值即可得出答案【详解】解:如图所示,过点A作ADBC交BC延长线于点D,AD=BD=4,ADB=90,ABD为等腰直角三角形,B=45故选B【点睛】本题主要考查了求特殊角三角函数值,解题的关键在于根据根据题意构造直角三角形求解4、A【分析】先根据银河股定理求出AB,根据正弦函数是对边比斜边,可得答案【详解】解:如图,C90,AC5,BC3, ,故选:A

8、【点睛】本题考查了锐角三角函数,利用正弦函数是对边比斜边是解题关键5、B【分析】先利用勾股定理求出BC的长,然后再求tanA的值【详解】解:在RtABC中,AB=3,AC2,BC= tanA=故选:B【点睛】本题考查锐角三角形的三角函数和勾股定理,需要注意求三角函数时,一定要是在直角三角形当中6、B【分析】首先根据直线求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,求得结论【详解】解:直线yk1x+2与x轴交于点A,与y轴交于点C,点C的坐标为(0,2),OC2,SOBC1,BD1,tanBOC,OD3,点B的坐标为(1,3),反比例函

9、数y在第一象限内的图象交于点B,k2133故答案为:B【点睛】本题考查了反比例函数与一次函数的交点坐标,解题的关键是仔细审题,能够求得点B的坐标7、A【分析】根据正方形的性质以及折叠的性质依次对各个选项进行判断即可【详解】解:正方形ABCD中,AB=6,E为AB的中点AD=DC=BC=AB=6,AE=BE=3,A=C=ABC=90ADE沿DE翻折得到FDEAED=FED,AD=FD=6,AE=EF=3,A=DFE=90,BE=EF=3,DFG=C=90,EBF=EFB,AED+FED=EBF+EFB,DEF=EFB,BFED,故结论正确;AD=DF=DC=6,DFG=C=90,DG=DG,Rt

10、DFGRtDCG,结论正确;FHBC,ABC=90ABFH,FHB=A=90EBF=BFH=AED,FHBEAD,结论正确;RtDFGRtDCG,FG=CG,设FG=CG=x,则BG=6-x,EG=3+x,在RtBEG中,由勾股定理得:32+(6-x)2=(3+x)2,解得:x=2,BG=4,tanGEB=,故结论正确故选:A【点睛】本题考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、平行线的判定、勾股定理、三角函数,综合性较强8、B【分析】先构造直角三角形,由求解即可得出答案【详解】A.,故此选项不符合题意;B.,故此选项符合题意;C.,故此选项不符合题意;D

11、.,故此选项不符合题意;故选:B【点睛】本题考查锐角三角函数,掌握在直角三角形中,是解题的关键9、D【分析】根据图形得出AD的长,进而利用三角函数解答即可【详解】解:过A作ADBC于D,DC=1,AD=3,AC=,cosACB=,故选:D【点睛】本题主要考查了解直角三角形,解题的关键是掌握勾股定理逆定理及余弦函数的定义10、D【分析】先根据直线解析式求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,利用待定系数法将点B坐标代入即可求得结论【详解】解:直线y=k1x+4与x轴交于点A,与y轴交于点C,点C的坐标为(0,4),OC=4,过B作

12、BDy轴于D,SOBC=2,BD=1,tanBOC=,OD=5,点B的坐标为(1,5),反比例函数在第一象限内的图象交于点B,k2=15=5故选:D【点睛】本题考查了反比例函数与一次函数的交点坐标,锐角三角函数,三角形面积,待定系数法求分别列函数解析式,解题的关键是作辅助线构造直角三角形二、填空题1、【分析】先证AED=90,再利用2+DAB=3+DAB=45,得出2=3可判断;利用EAF和3的余弦值相等判断;利用ACDAEF及勾股定理可判断;设BM=a,用含a的式子表示出和即可判断【详解】AC=BC,C=90,3+DAB=CAB=ABC=45,和的垂直平分线交于点E,AE=ED=BE,1=2

13、,1+CBA=EDBCAB+2=1+CBA,EDB=CAE,EDB+CDE=180,CAE+CDE=180,CAE+C+CDE+AED=360,C+AED=90,C=90,AED=90,AE=ED,2+DAB=3+DAB=45,2=3,ACDAEF,故正确;AED为等腰直角三角形,AD=ED,cosEAF=cos3=,故正确;ACDAEF,在RtAED中,AE=AD,故错误;BEAD,BEAD,DAB=1,2+1=1+DAB=45,过点B作BMAE交AE的延长线于点M,MEB=2+1=45,EM=BM,设BM=a,则EM=a,BE=a,AE=a,=,故错误故答案为:【点睛】本题考查了线段垂直平

14、分线的性质,相似三角形的判定与性质,勾股定理及三角函数值等知识点,解题的关键是正确作出辅助线2、 60 【分析】设直线yx+b与x轴交于点D,作BEy轴于E,CFy轴于F首先证明ADO60,可得AB2BE,AC2CF,由直线yx+b与双曲线y在第一象限交于点B、C两点,可得x+b,整理得,x2+bxk0,由韦达定理得:x1x2k,即EBFCk,由此构建方程求出k即可,第二个问题分别求出第一个,第二个,第三个,第四个三角形的周长,探究规律后解决问题【详解】设直线yx+b与x轴交于点D,作BEy轴于E,CFy轴于Fyx+b,当y0时,xb,即点D的坐标为(b,0),当x0时,yb,即A点坐标为(0

15、,b),OAb,ODb在RtAOD中,tanADO,ADO60直线yx+b与双曲线y在第三象限交于B、C两点,x+b,整理得,x2+bxk0,由韦达定理得:x1x2k,即EBFCk,cos60,AB2EB,同理可得:AC2FC,ABAC(2EB)(2FC)4EBFCk16,解得:k4由题意可以假设D1(m,m),m24,m2OE14,即第一个三角形的周长为12,设D2(4+n,n),(4+n)n4,解得n22,E1E244,即第二个三角形的周长为1212,设D3(4a,a),由题意(4a)a4,解得a22,即第三个三角形的周长为1212,第四个三角形的周长为1212,前25个等边三角形的周长之

16、和12+1212+1212121212121260,故答案为4,60【点睛】本题考查了反比例函数与一次函数图象的交点问题,规律型问题等知识,解题的关键是学会探究规律的方法,属于中考常考题型3、【分析】根据坡度的概念(把坡面的垂直高度h和水平方向的距离l的比叫做坡度)求出A,根据直角三角形的性质解答【详解】解:i=1:,tanA=,A=30,上升的高度=AB=4(米).故答案为4【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握锐角三角函数的定义、坡度坡角的概念是解题的关键4、或【分析】由题意可知当P在AB上时,P是AB的中点,即AB=BP;当P在AB延长线上时,BP=3AB,在直角三角

17、形中由正切公式求出即可【详解】解:(1)如图1所示,BC=3AB,PC=AB,BP=2PC,又四边形ABCD是矩形,tanAPB=;(2)如图2所示,BC=3ABPC=AB,BP=4AB,tanAPB=综上所述APB的正切值为或故答案为:或【点睛】本题主要考查矩形性质和三角函数的定义,注意分类讨论思想的运用,解题的关键是分两种情况求出AB与BP的关系5、45度【分析】由条件根据A的正切值求得A的度数,再根据三角形的内角和定理求C即可【详解】解:在ABC中,tanA =,A=60,C=180-A-B=180-60-75=45故答案为:45【点睛】本题主要考查特殊角的正切值以及三角形的内角和定理,

18、熟记特殊角的三角函数值是解题的关键三、解答题1、0【分析】根据特殊角三角函数值的混合计算法则求解即可【详解】解: 【点睛】本题主要考查了特殊角三角函数值的混合计算,熟知相关计算法则是解题的关键2、-3【分析】根据特殊角三角函数,绝对值,有理数的乘方,化简二次根式的计算法则求解即可【详解】解:原式= = -3【点睛】本题主要考查了特殊角三角函数,绝对值,有理数的乘方,二次根式的化简,熟知相关近计算法则是解题的关键3、-3【分析】根据特殊三角函数值、零次幂、负指数幂及二次根式的运算可直接进行求解【详解】解:327-2021-0-2cos30+-12-1=3-1-232+(-2)=-3【点睛】本题主

19、要考查特殊三角函数值、零次幂、负指数幂及二次根式的运算,熟练掌握特殊三角函数值、零次幂、负指数幂及二次根式的运算是解题的关键4、(1);(2),【分析】(1)根据特殊角的三角函数值分别进行计算,再把所得的结果合并即可;(2)运用直接开平方法即可得出答案【详解】解:(1)= ;(2),【点睛】此题考查了解一元二次方程和特殊角的三角函数值,灵活运用解方程的方法是解答本题的关键5、168米【分析】作CEAB于E,则在RtBCE中由正切关系可求得CE的长,再在RtACE中,由正切关系可求得AE的长,从而可求得AB的长,即电视发射塔的高【详解】由题意CD=122.8=33.6(米)作CEAB于E,如图所示则CEA=CEB=90CDBD,ABBDCDB=DBE=CEB=90四边形CDBE是矩形BE=CD=33.6米ECB=22,ACE=58在RtBCE中,(米)在RtACE中,(米)AB=AE+BE=134.4+33.6= 168(米)即电视发射塔的高度为168米【点睛】本题考查了解直角三角形的应用,矩形的判定与性质,关键是理解题中的仰角、俯角的含义,作辅助线把非直角三角形转化为直角三角形来解决

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁